City of Riverside

WASTEWATER COLLECTION AND TREATMENT FACILITIES INTEGRATED MASTER PLAN

VOLUME 4: WASTEWATER TREATMENT SYSTEM CHAPTER 7: SECONDARY TREATMENT

FINAL

February 2008

City of Riverside

WASTEWATER COLLECTION AND TREATMENT FACILITIES INTEGRATED MASTER PLAN

VOLUME 4: WASTEWATER TREATMENT SYSTEM CHAPTER 7: SECONDARY TREATMENT

TABLE OF CONTENTS

			Page No.
7.1	PURF	POSE	7-1
7.2	RECO	DMMENDATIONS AND CONCLUSIONS	7-1
7.3		CRIPTION OF EXISTING TREATMENT	
	7.3.1	Process Design Criteria	7-2
	7.3.2	Sludge-Settling Characteristics - Clariflux™ Model	7-4
7.4		TIFICATION OF SECONDARY TREATMENT EXPANSION	
	ALTE	RNATIVES FOR THE RWQCP	7-7
	7.4.1		
	7.4.2	Conventional Activated Sludge Process	7-9
	7.4.3	Membrane Bioreactor Process	7-12
	7.4.4		7-15
7.5	PRO	CESS MODELING OF TREATMENT ALTERNATIVES	7-20
	7.5.1	Conventional Activated Sludge Alternative	7-20
	7.5.2		
	7.5.3	Integrated Fixed Film Activated Sludge Alternative	7-20
	7.5.4		7-21
7.6	COM	PARISON OF SECONDARY TREATMENT ALTERNATIVES	7-26
	7.6.1	Non-Economic Comparison	7-26
	7.6.2		
7.7		ANSION PROJECT PHASING	
7.8	CON	TROL OF EFFLUENT ORGANICS	7-30
7.9	ODO	R CONTROL	7-31
7.10	RETU	JRN ACTIVATED SLUDGE/WASTE ACTIVATED SLUDGE PUMPIN	IG 7-31
7.11	REFE	RENCE	7-31
APPE	NDIX A	A – BIOTRAN MODEL	
		<u>LIST OF TABLES</u>	
T-1-1-	7.4	Desires Oritaria for Forestains of the DIMOOD	7.0
Table		Design Criteria for Expansion of the RWQCP	
Table		Summary of Secondary Sludge-Settling Tests	
Table		Enhanced Primary Treatment Bench Test Results	
Table		Summary of Enhanced Primary Treatment Testing Results	
Table	_	Comparison of Combined and Separate Membrane Tank Processes	
Table		Comparison of Suspended and Attached Growth Processes	
Table		Comparison of IFAS and MBBR Processes	
Table		Comparison of Fixed Film Process Media	
Table	7.9	Modeling of Secondary Treatment Alternatives for Plant 1	7-21

Table 7.10 Table 7.11	Advantages and Disadvantages of Secondary Treatment Alternatives7 Comparison of Recycle Treatment Alternatives	
Table 7.12	Life-Cycle Cost of Secondary Treatment Alternatives -	
	With Primary Effluent Equalization	7-28
Table 7.13	Life-Cycle Cost of Secondary Treatment Alternatives -	
	Without Primary Effluent Equalization	7-28
Table 7.14	Life-Cycle Cost of Secondary Treatment Alternatives - High SRT	
	(Without Primary Effluent Equalization)	7-29
	<u>LIST OF FIGURES</u>	
Figure 7.1	RWQCP Process Flow Diagram	. 7-3
Figure 7.2	Secondary Sludge-Settling Test Results	
Figure 7.3	EPT Test Results	
Figure 7.4	Process Schematic (a) CAS, (b) MBR, and (c) IFAS	7-11
Figure 7.5	MBR Process Configuration	7-13
Figure 7.6	Attached Growth Process Schematic	7-17
Figure 7.7	Attached Growth Media Options	7-19
Figure 7.8	CAS Alternative Proposed Site Layout	7-23
Figure 7.9	MBR Alternative Proposed Site Layout	7-24
Figure 7.10		
Figure 7.11		
Figure 7.12		

SECONDARY TREATMENT

7.1 PURPOSE

The purpose of this chapter is to summarize the evaluation of the existing secondary treatment facility at the City of Riverside (City) Regional Water Quality Control Plant (RWQCP). This chapter also includes a description of additions or modifications required for Secondary Treatment Facilities to increase capacity to 52.2-mgd annual average (AA) flow.

7.2 RECOMMENDATIONS AND CONCLUSIONS

- The existing treatment system was evaluated and the plant capacity is 40-mgd AA.
- Four options for expanding the RWQCP secondary treatment plant were considered: Conventional Activated Sludge (CAS), Enhanced Primary Treatment (EPT), Membrane Bioreactor (MBR), and Integrated Fixed Film Activated Sludge (IFAS).
- EPT reduced the aeration influent biochemical oxygen demand (BOD) such that denitrification is affected and no increase in capacity is achieved. EPT therefore is not feasible for increasing the secondary treatment capacity.
- CAS, MBR, and IFAS options can all achieve the required expanded capacity. The
 IFAS option presents more risks than the other alternatives due to the limited
 experience and number of installations using this technology.
- For meeting current effluent limits, CAS is the most cost-effective alternative followed by IFAS.
- For meeting current effluent limits plus improved Whole Effluent Toxicity (WET)
 results and better Endocrine Disrupting Compounds (EDCs) destruction, the life-cycle
 costs for all options are nearly the same, within the uncertainty of the cost estimate.
- Based on the ability to achieve better effluent quality, the City chose the MBR alternative for the future expansion at a meeting on November 17, 2006.
- The current influent flow to the RWCP is approximately 80 percent of the plant's rated capacity, indicating a need for expansion. However, because of a slow down in the housing market, the City has decided to perform this expansion in two phases. The first phase will expand the Plant 1 secondary treatment facilities from 20 to 26-mgd AA. The second phase will expand the secondary facilities from 26 to 32 mgd.

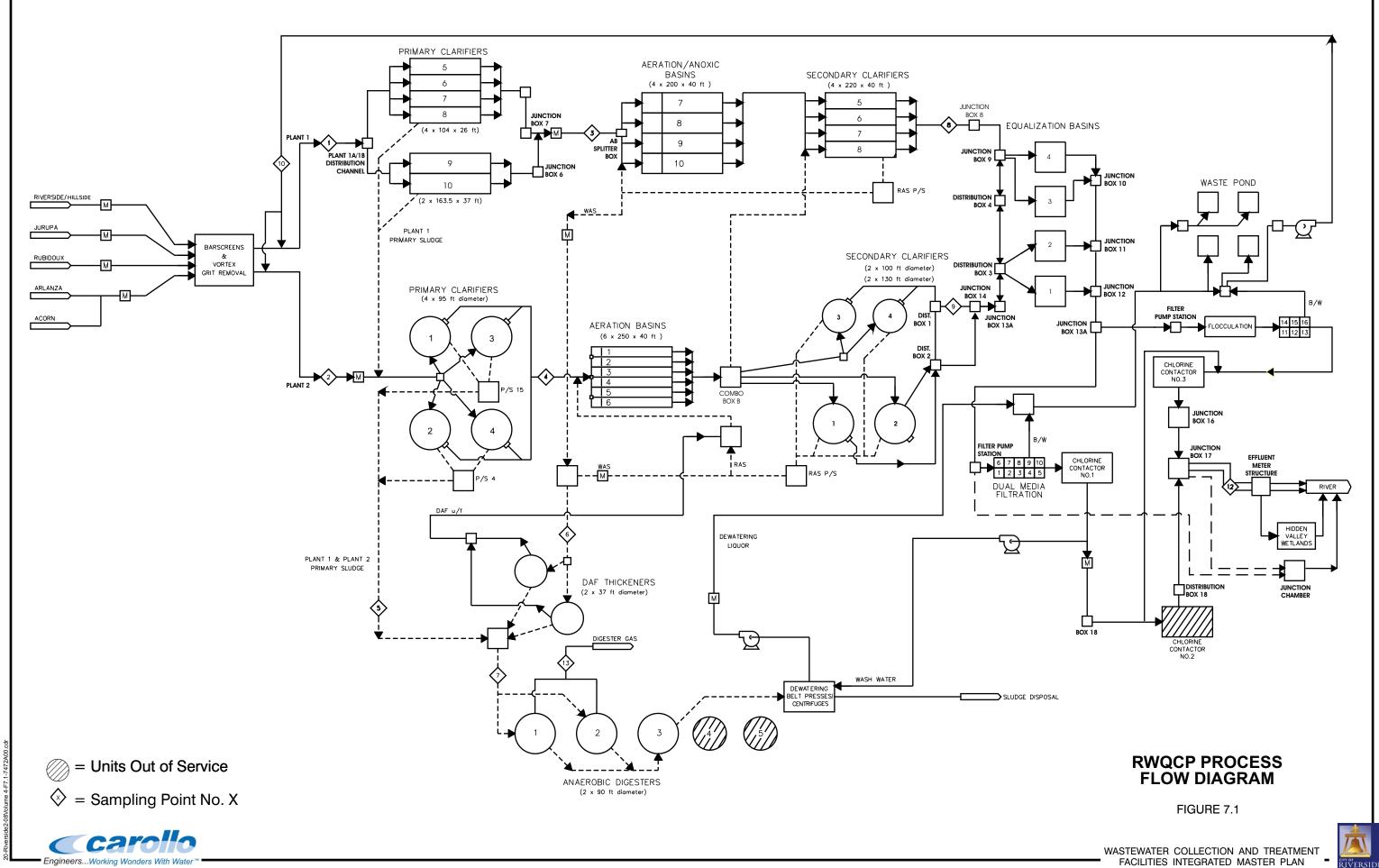
7.3 DESCRIPTION OF EXISTING TREATMENT

Figure 7.1 shows the flow schematic of the existing facilities. The influent wastewater stream is divided into two plants (Plant 1 and Plant 2) after screening and grit removal.

In both Plant 1 and Plant 2, wastewater is clarified in primary clarifiers before biological treatment. Plant 1 has four rectangular aeration basins and four rectangular secondary clarifiers, and Plant 2 has six rectangular aeration basins and four circular secondary clarifiers. For a detailed description of the existing facilities, refer to Volume 4, Chapter 1 - Description of Existing Facilities. The description of facilities for handling waste solids generated during the wastewater treatment process is discussed separately in Volume 8, Chapter 1 - Biosolids Management: Existing Facilities. The design criteria for the solids handling facilities are discussed in Volume 8, Chapter 3 - Biosolids Management: Design Criteria Development.

7.3.1 Process Design Criteria

Table 7.1 presents a summary of the design criteria for expansion of facilities at the RWQCP. For detailed information on the process design criteria, refer to Volume 4, Chapter 3 - Process Design and Reliability Criteria.


Table 7.1	Design Criteria for Expansion of the RWQCP
	Wastewater Collection and Treatment Facilities Integrated Master Plan
	City of Riverside

Effluent Parameter	Value		
Design Flows			
Average Dry Weather Flow (ADWF), mgd	52.2		
Peak Wet Weather Flow (PWWF), mgd	115 ⁽¹⁾		
Approximate Recycle Flow to Headworks, mgd	5.5		
Average Influent Wastewater Characteristics (2)			
BOD, mg/L	250		
TSS, mg/L	250		
TKN, mg/L as N	35.5		
Effluent Quality Requirements			
BOD, mg/L	<10		
TSS, mg/L	<10		
Total Inorganic Nitrogen, mg/L as N	<10 ⁽³⁾		

Notes:

- (1) Based on a wet weather peak hour flow factor of 2.2.
- (2) Does not include impact of recycle streams from dewatering, thickening, and tertiary filter backwash.
- (3) The current requirement is 13 mg/L, but this will change to 10 mg/L when flows exceed 35-mgd AA.

February 2008 7-2

7.3.2 Sludge-Settling Characteristics - Clariflux™ Model

There are three different factors that could limit the capacity of a secondary treatment system (aeration basins and clarifiers):

Aeration Basin Capacity:

In a nitrifying system, such as at the RWQCP, the basin must be large enough to ensure full nitrification at design loads and minimum expected wastewater temperatures. Basin capacity typically increases as Mixed Liquor Suspended Solids (MLSS) concentration is increased.

Aeration System Capacity:

The aeration system (blowers and diffusers) must be able to supply sufficient oxygen to the aeration basin under design load conditions. Blower capacity must be assessed at maximum expected air temperatures. The oxygen transfer efficiency of the diffusers depends on air flux and process conditions, such as Sludge Retention Time (SRT), MLSS concentration, etc.

Clarifier Capacity:

The clarifiers must be able to produce an effluent with a low Total Suspended Solids (TSS) concentration under design loads. Typically, clarifier capacity increases with lower MLSS concentrations.

Both aeration basin capacity and aeration system capacity can be modeled to a high degree of accuracy using existing process models for the aeration system. Secondary clarifier capacity, however, depends on sludge-settling characteristics. These characteristics may be assumed or estimated based on available data such as Sludge Volume Index (SVI) data. Translating SVI data to sludge-settling characteristics does carry some risk, as the SVI test does not discriminate between sludge settling, which determines the required Surface Overflow Rater (SOR) and sludge compaction, which determines the required Return Activated Sludge (RAS) rate.

A sludge-settling test was performed to determine the sludge-settling characteristics of the mixed liquor for both Plants 1 and 2. A sample of mixed liquor from the aeration basin effluent was collected and settling tests were performed, in duplicate, in a 6-foot sludge-settling column. The test was repeated with increasingly dilute mixed liquor samples (diluted with secondary effluent) to obtain initial sludge settling velocity as a function of MLSS concentration. These results were then used to estimate the settling properties of sludge for both Plant 1 and Plant 2.

Rate of settling data for various solids concentrations was collected and compared with typical settling rates. Figure 7.2 shows a summary of the results of the settling tests. The figure shows the effect of MLSS concentrations on the settling rates (i.e., SOR). From the figure, it is apparent that the mixed liquor settles very fast in the secondary clarifiers at both Plants 1 and 2.

SECONDARY SLUDGE SETTLING TEST RESULTS

FIGURE 7.2

The figure suggests that at a typical MLSS operating concentration range of 2,500 to 3,500 mg/L, the clarifiers can be loaded at a much higher SOR ranging from 3,000 to 4,500 gpd/ft². This indicates that sludge-settling characteristics are not the limiting factor for the RWQCP secondary clarifiers. Experience and clarifier stress testing at other plants indicate that where SOR exceeds 1,500 gpd/ft² hydraulic effects begin to dominate, causing an increase in effluent TSS concentration, regardless of sludge-settling characteristics. Therefore, the loading of the secondary clarifiers should be limited to 1,500 gpd/ft² under all conditions.

Hence, in order to increase the capacity at the RWQCP, the clarifiers can be operated at higher SOR, which would enable the operators to maintain a higher MLSS concentration (i.e., higher capacity) in the aeration basins. Table 7.2 summarizes the existing and proposed clarifier operating conditions.

Table 7.2 Summary of Secondary Sludge-Settling Tests
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

Parameter	Plant 1	Plant 2	
Current Operation			
Average Influent Flow, mgd	11	20.1	
MLSS, mg/L	2,858	3,173	
SOR at Average Flow, gpd/ft ²	386	494	
Design for 40 mgd			
Average Influent Flow, mgd	20	20	
MLSS, mg/L	3,500	2,500	
SOR at Average Flow, gpd/ft ²	645	631	

Previously during the secondary system upgrades project, done by Carollo Engineers (Carollo) in 2002, the Biotran showed that the plant capacity was approximately 36 mgd. At the time of that project, a settling test was not conducted for the evaluation of the performance of the secondary clarifiers and sludge-settling characteristics were assumed. The settling test results as discussed above indicate that the sludge-settling characteristics at both Plants 1 and 2 are very good, and better than assumed. Due to the good sludge-settling characteristics, the aeration basins can be operated at a higher MLSS to achieve higher treatment capacity. Only the MLSS in Plant 1 can be increased to 3,500 mg/L to increase capacity. The MLSS concentration in Plant 2 should not be increased beyond 2,500 mg/L, as the capacity of Plant 2 is limited by the capacity of the aeration system and not the performance of the secondary clarifiers. Making these adjustments, the combined capacity of the secondary system for Plant 1 and Plant 2 is 40 mgd, based on the Biotran model.

7.4 IDENTIFICATION OF SECONDARY TREATMENT EXPANSION ALTERNATIVES FOR THE RWQCP

Based on the current and expected future treated effluent discharge requirements, and also keeping in mind the City's requirements for future treatment goals and operational flexibility, the following four secondary treatment alternatives were identified:

- 1. Using EPT to increase secondary treatment capacity.
- 2. Expand the existing CAS system at Plant 1.
- 3. Convert the existing Plant 1 secondary treatment facility into a MBR plant capable of treating the 32.2 mgd of plant flow.
- 4. Convert the existing Plant 1 secondary treatment facility into an IFAS facility.

In addition to the above four processes, the Waste Activated Sludge Anaerobic Contact (WASAC) process was also considered for secondary treatment expansion. The WASAC is a proprietary process developed by Carollo that uses phosphorus-harboring organisms to remove BOD from wastewater in an anaerobic environment. The WASAC process would be inserted between the primary clarifiers and the aeration basins. This process would supplement the secondary treatment process such that the secondary expansion could be delayed. The WASAC process can potentially provide the City significant cost and energy savings. Since at this time the WASAC process has not been proven, it was not evaluated further or recommended to the City. However, in the future, if proven successful through pilot testing, the WASAC process could be a viable alternative for the City, since it could make best use of the existing facilities. Appropriate design considerations were made in this Master Plan to leave room for the potential implementation of the WASAC process.

For this project only the four alternatives listed above were evaluated. The four alternatives are described and discussed in the following subsections.

7.4.1 Enhanced Primary Treatment

EPT doses ferric iron and polymer (typically anionic polymer) to the primary influent to increase flocculation and settling, hence improving primary clarifier performance, specifically TSS and BOD removal. This reduces the load on the secondary treatment plant. The reduced load translates into reduced operating costs (mostly due to lower aeration air requirements and lower secondary solids production). In some cases, the secondary treatment capacity can also be increased. Carollo investigated whether EPT would significantly increase primary clarifier performance by performing a bench test. The effect of EPT on secondary treatment was also considered.

For the test, a sample of primary influent from each plant was taken. The sample was divided into six samples that were dosed with 0.5 mg/L of anionic polymer and different concentrations of ferric chloride: 5, 10, 15, 20, and 25 mg/L. The control received neither ferric nor polymer. All the samples were thoroughly mixed and allowed to settle in Imhoff cones. After about half an hour the settled solids were drained from the Imhoff cone and a

sample of the supernatant was collected and submitted to the RWQCP laboratory for analysis. The test results are summarized on Figure 7.3. As shown in the figure, EPT did increase primary clarifier performance. The key results from the experiment are summarized in Table 7.3.

Table 7.3 Enhanced Primary Treatment Bench Test Results
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

Parameter	Plant 1	Plant 2		
Control				
COD Removal	32%	24%		
TSS Removal	59%	54%		
Optimum Dose				
Dose, mg/L as FeCl₃	10	15		
COD Removal	46%	45%		
TSS Removal	68%	71%		
Maximum Dose Tested				
COD Removal	50%	49%		
TSS Removal	76%	72%		

The optimum ferric chloride dose at Plant 1 appeared to be approximately 10 mg/L and 15 mg/L at Plant 2.

The effect of EPT on secondary treatment is summarized in Table 7.4.

Table 7.4 Summary of Enhanced Primary Treatment Testing Results
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

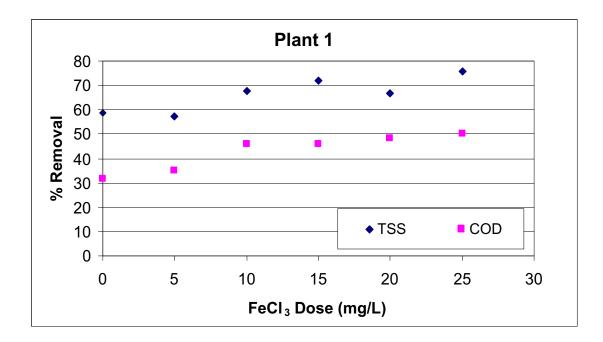
0.0, 0.10.0.0.	~			
Parameter	Conventional	EPT		
Aeration Basin Influent				
BOD, mg/L	160	112		
TSS, mg/L	101	61		
NH ₄ -N, mg/L	29	28		
TKN, mg/L	38	35		
Soluble BOD, mg/L	64	60		
BOD: TKN Ratio	4.2	3.2		
Aeration Basin Operating Cor	Aeration Basin Operating Conditions			
SRT, days	5.3	8.9		
MLSS, mg/L	3,500	3,500		
Anoxic Fraction	25%	50%		
Primary Sludge, lb/d	63,250	82,900		
WAS, lb/d	43,200	25,400		
Digester Feed Flow, mgd	0.50	0.49		
Aeration Basin Air, scfm	27,600	21,500		

Table 7.4		nced Primary Treatment Testing ction and Treatment Facilities Int	
D,	aramotor	Conventional	EDT

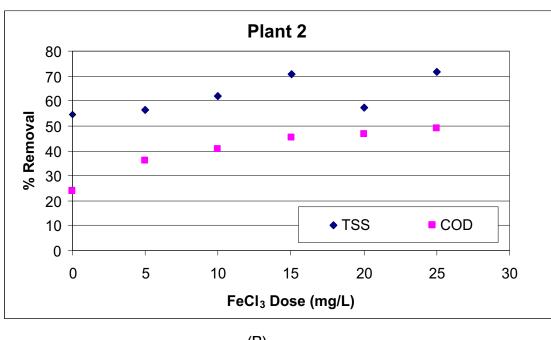
Parameter	Conventional	EPT			
Secondary Effluent Quality	Secondary Effluent Quality				
NH ₄ -N, mg/L	0.7	0.5			
Total Organic Nitrogen, mg/L	2.7	2.7			
NO ₃ -N, mg/L	6.9	7.5			
Total Inorganic Nitrogen, mg/L	7.6	7.9			
Total Nitrogen, mg/L	10.3	10.6			

The table confirms that EPT has the potential to reduce the operating costs of the secondary treatment (approximately 22-percent savings in aeration air and 41-percent savings in WAS mass, while primary sludge production increases by 31 percent). However, it should be noted that EPT reduces the BOD to Total Kjeldahl Nitrogen (TKN) ratio in the aeration basin influent from 4.2 to 3.2.

Typically, when this ratio drops below 4.0, special measures are required to achieve a high level of denitrification. In this case, the anoxic fraction in the aeration basin needs to be increased to 50 percent. This means that there is no capacity increase as the reduced aerobic volume requirement with EPT is taken up by the increased anoxic volume. Operating the basin at such a high anoxic fraction may also increase the SVI. Should that happen, secondary clarifier performances would be affected and the secondary treatment capacity could be reduced.


For these reasons, EPT is not recommended for the RWQCP and is not discussed further.

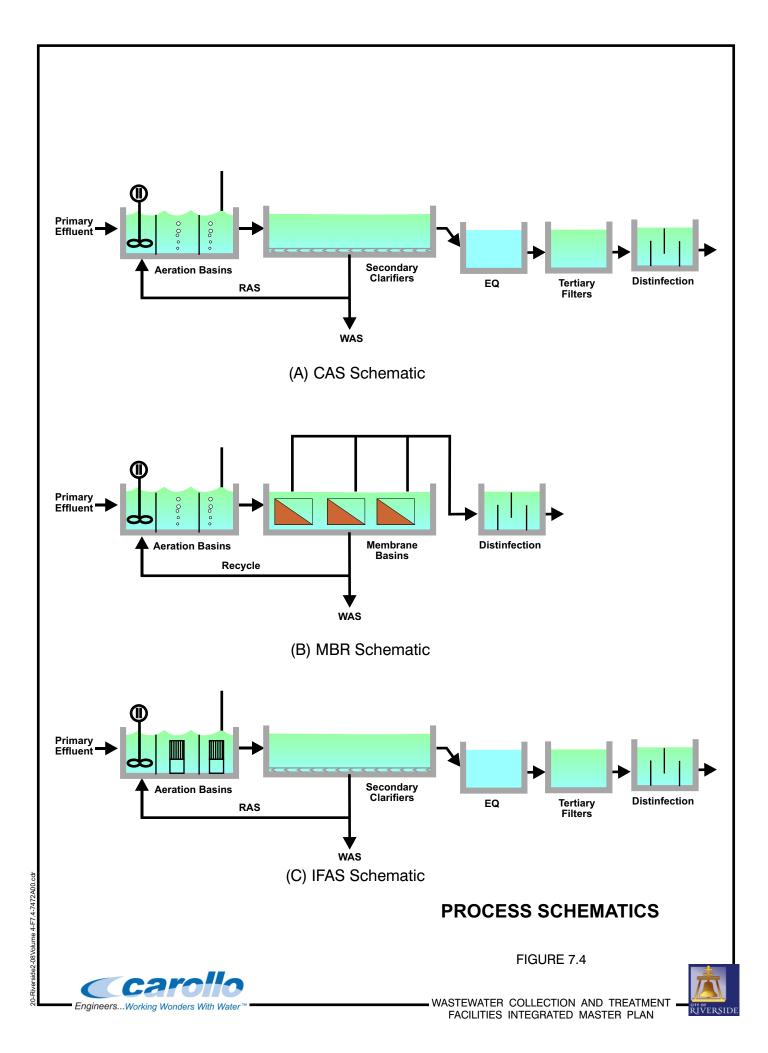
7.4.2 Conventional Activated Sludge Process


The City operates two separate trains of CAS process. The secondary treatment processes at Plant 1 and Plant 2 are rated at 20-mgd AA each. For future increase in capacity, Plant 1 will be expanded since some of the process units in Plant 1 have aged and there is enough room for future units in Plant 1, whereas Plant 2 has limited room for future expansions. The expansion would increase Plant 1 capacity to 32.2-mgd AA and the total RWQCP treatment capacity to 52.2-mgd AA.

The CAS process is a proven wastewater treatment method and the City has had good experience with the process. Additionally, the operators at the RWQCP are well versed with the operation and maintenance of the facilities involved in a CAS process. Hence, for the next expansion, the CAS process was chosen as a secondary treatment alternative for further evaluation. For the comparison of the treatment alternatives, the CAS alternative was used as a base case scenario. A process schematic of the CAS process is shown on Figure 7.4.

The process requirements for the CAS process are summarized in Section 7.5.

(A)

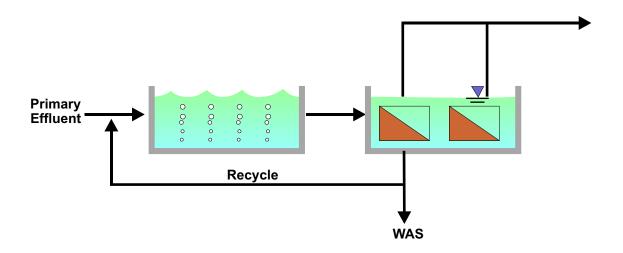

(B)

EPT TEST RESULTS

FIGURE 7.3

7.4.3 Membrane Bioreactor Process

The MBR combines conventional biological treatment with the use of membranes for the separation of the solid and liquid phases. The MBR treatment train is similar to the existing secondary processes except that membranes replace the secondary clarifiers and tertiary filters. In the MBR process, the MLSS can be increased beyond that which is possible in CAS systems. Figure 7.4 includes a process schematic for the MBR alternative.


Typically, MBR systems operate at MLSS concentrations in the range of 8,000 to 10,000 mg/L, compared with a value of around 2,500 to 3,000 mg/L in the CAS. The higher MLSS provides the benefit of a greater treatment capacity per unit volume of aeration basin. In order to minimize the solids buildup near the membrane surface, which would reduce the flow of water through the membranes, membrane agitation air is introduced to scour the membrane surface. This air is usually in addition to the biological process air requirements, although at least one manufacturer combines both air needs as shown on Figure 7.5, part (A).

Because the process incorporates a membrane barrier, it produces a low turbidity effluent that is not impacted by quality changes in the feed water. Another benefit is that the effluent TSS concentration is low enough that tertiary filtration is not required. In addition, the treated effluent consistently has a low turbidity, which means process reliability is good. Finally, because the MBR system would operate at a longer SRT, there would be some endogenous destruction of the biomass within the process. Therefore, total sludge production from the facility be would reduced by about 10 to 15 percent, compared with operating a CAS plant.

The higher SRT also has benefits related to future regulatory requirements. At the Inland Empire Utilities Agency Regional Plant 5, it was shown that operating a CAS at a very high SRT (40 days) the effluent was able to perform much better in the WET test. Operating at a high SRT also improves the destruction of recalcitrant compounds including EDCs. The consistently low TSS concentration in the MBR effluent also means that disinfection is easier to achieve and that more disinfection process options are available. The MBR effluent would also be most compatible with using an advanced oxidation process (such as ozone) to destroy remaining organic compounds. All these factors make MBR the process that could most easily be combined with advanced tertiary treatment options to meet future effluent limits (Volume 2, Chapter 2 - Regulatory Requirements).

All MBR systems require screening of the influent to protect the membranes. In systems that incorporate hollow-fiber membranes (most systems), it is important that abrasive solids and hair be removed. To accomplish this, MBR systems require fine screening of the feed water in the range of 1 mm. Abrasive solids can wear through the membrane fibers and cause failures, while hair wraps around the fibers, causes clumping of the mixed liquor and is very difficult to remove. Ideally, fine screens are installed upstream of the aeration basins, but they can also be installed in the sludge recycle line between the aeration basins and the membrane tanks depending on the site layout.

(A) Combined Membrane-Aeration Tank

(B) Separate Membrane Tank

MBR PROCESS CONFIGURATION

FIGURE 7.5

One MBR supplier has a flat sheet membrane configuration, which is less susceptible to issues with hair, but is still subject to abrasion. This system can be used with 3-mm screens.

Even with air agitation, membranes lose their water permeability (flux rate) with time and require cleaning. Most MBR systems include regular relaxing (zero flux) or back pulsing (using permeate to dislodge accumulated solids). Depending on operating conditions, a chemical clean may be required every 3 to 6 months. Chemical cleaning typically involves submerging the membranes in a solution of either sodium hypochlorite (to remove biological fouling) or citric acid (to remove lime scale).

There are different ways to configure an MBR system as shown on Figure 7.5. In the original plants that were built (around 1 mgd or less), the membranes (in the form of cassettes) were simply installed directly into the aeration basins creating a combined membrane-aeration tank. When it is time for chemical cleaning, the membrane cassettes are lifted out of the aeration basins (by crane) and dipped into a cleaning tank. Cleaning could require 4 to 6 hours of soaking before the cassette is returned to the aeration basin. Alternatively, at least one manufacturer operates by cleaning the membranes in place in the aeration basin.

The other approach to designing MBR systems, as shown on Figure 7.5, part (B), is to construct a separate membrane tank to house the membranes. The mixed liquor is circulated from the aeration basin to the membrane tank and back to the aeration basin. In this configuration, the membrane tank can be divided into cells that can be taken off-line and cleaned. A potential disadvantage of this approach is that a separate tank is required. For the RWQCB, the secondary clarifiers could be modified to become the membrane tanks.

A comparison of the separate membrane tank approaches is presented in Table 7.5.

Table 7.5	•	Separate Membrane Tank Processes atment Facilities Integrated Master Plan	
Com	Combined Membrane-Aeration Separate Membrane Tank		
small cleanii	nembranes, placing them in a ng tank and then returning them to basins is operator intensive.	Removal of membrane cassettes for cleaning is not needed, as individual cells can be taken off-line.	
cassette, the to operation compared to This leads to	vidual flow control on each e clean membrane, when returned would take most of the load the other membrane cassettes. In uneven distribution of flow	A complete train of membranes can be cleaned simultaneously, so the flow through the membranes can be controlled (relative to the other trains) when the clean membranes are brought back online.	
	membrane cassettes and see of the available membrane area.	Major modifications to the aeration basins	

are not required.

Comparison of Combined and Congrete Membrone Tank Dree

Table 7 E

Table 7.5	Table 7.5 Comparison of Combined and Separate Membrane Tank Processes Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside		
Com	Combined Membrane-Aeration Separate Membrane Tank		
Aeration basins tend to be much deeper than required to house the membranes, so complex systems are required to support the membranes and associated piping.		The activated sludge biological system can be designed, configured, and operated independently of the membrane tanks.	
		The separate membrane tank approach is well suited to larger installations where the number of membrane cassettes is high.	

The main disadvantage of the separate membrane tank configuration is that a high rate mixed liquor recycle system must be installed and operated. Typically, a recycle rate of 400 percent is used to maintain the aeration tank MLSS concentration at 80 percent of the membrane tank MLSS concentration.

Based on the above discussion, the combined membrane-aeration tank option is not considered further. For the preliminary evaluation of expansion of Plant 1, the separate membrane tank approach will be used.

The process requirements for converting the Plant 1 CAS system to an MBR system are summarized in Section 7.5.

7.4.4 Attached Growth Processes

Attached growth processes use biomass attached to media to perform the required biological transformations. In these applications, the attached growth forms a film on the media; this is referred to as biofilm. The differences between suspended and attached growth processes are summarized in Table 7.6.

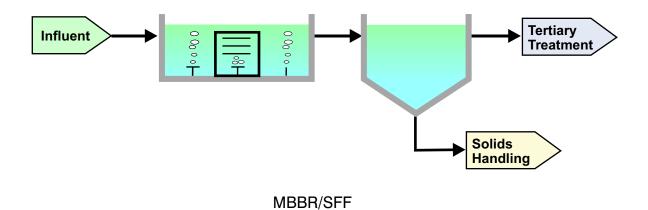
Table 7.6	ible 7.6 Comparison of Suspended and Attached Growth Processes Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside	
	Suspended Growth	Attached Growth
No gradient conditions.	for soluble compounds under typical	A significant gradient that drives diffusion of soluble compounds.
Biomass mo	ves with effluent through bioreactor.	Biomass stationary while effluent passes through.
Bioreactor e	ffluent has a high TSS concentration.	Bioreactor effluent TSS is low.
	ign must take both solids and account.	Clarifier design based on hydraulic loading only.
Produces me	ore WAS.	Produces less WAS.
•	ameters (such as SRT, aeration MLSS n) can be controlled.	Limited process control options.

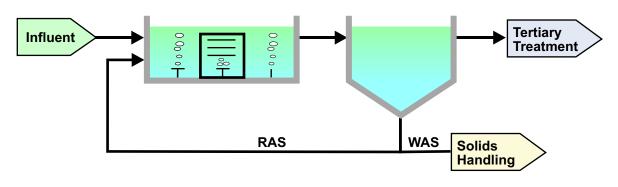
February 2008 7-15

Table 7.6	le 7.6 Comparison of Suspended and Attached Growth Processes Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside			
	Suspended Growth	Attached Growth		
	ntact time between biomass and everal hours.	Contact time of minutes.		
Can be desi Removal (B	gned to perform Biological Nutrient NR).	Limited ability to perform BNR.		
Superior effl	uent quality.	Inferior effluent quality.		

Some modern attached growth processes differ from the more traditional processes in that in the modern process the media is submerged below the water surface. This means that, as for suspended growth processes, aeration air must be introduced at pressure (related to the diffuser submergence depth). This also allows for increased contact times, but still does not allow the operator to completely control the solids inventory.

There are two versions of the modern attached growth processes:


- Moving Bed Bioreactor (MBBR) or Submerged Fixed Film (SFF).
- IFAS.


The process schematic for each process is shown on Figure 7.6. Primary effluent enters the basin that contains the media and the attached biomass. The effluent from the basin passes through a clarifier before proceeding to tertiary treatment. Settled sludge goes to sludge handling. For MBBR/SFF, as with trickling filter effluent, the TSS concentration in the bioreactor effluent is low.

The IFAS process schematic is similar to the MBBR/SFF flow diagram. The main difference is the presence of a RAS line that allows the cultivation of suspended biomass in addition to the attached biomass. The bioreactor effluent has a high TSS concentration, similar to suspended growth processes.

The two processes are compared in Table 7.7.

Table 7.7 Comparison of IFAS and MBBR Processes Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside				
MBBR/SFF IFAS				
Attached bio	mass only	Attached and suspended biomass		
No RAS line		RAS to a CAS process		
Biomass inventory cannot be controlled		Biomass inventory can be partially controlled		
Pin floc due to low TSS in basin effluent		Typically have low SVI		
No control o	ver solids inventory	Solids inventory can be controlled		

IFAS

ATTACHED GROWTH PROCESS SCHEMATIC

FIGURE 7.6

The IFAS system has some important advantages, especially the ability to partially control biomass inventory (or SRT). Since the activated sludge process at the RWQCP already includes RAS pumps and provisions to handle high bioreactor TSS concentrations, there is no additional investment for selecting IFAS above MBBR. In addition, the suspended biomass does not have to be attached to media, which means that the total surface area of the required media is reduced. For these reasons, further evaluation of attached growth processes is based on an IFAS system.

There are two different kinds of media that can be used with the IFAS system, free floating or fixed, as shown on Figure 7.7. The free-floating media consist of small plastic elements that have positive buoyancy. Fixed media is typically attached to a frame that can be lowered to the floor of the basin. Fixed media can consist of either rigid media (like structured packing used in trickling filters) or pliable media (typically attached to a frame that allows for limited media movement). Free-floating and fixed media are compared in Table 7.8.

Table 7.8	Table 7.8 Comparison of Fixed Film Process Media Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside		
	Free-Floating Media	Fixed Media	
	ne Screens and Primary Treatment e required	Influent: Fine Screens not required	
Coarse Bub	ble Aeration only	Fine or Coarse Bubble Aeration	
Screens rec	quired in Basin to Retain Media ⁽¹⁾	No Screens required in basin	
Large area	per unit volume	Smaller area per unit volume	
Notes: (1) Screens typically produce 2 to 6 inches of water column head loss, per screen.			

Free-floating media require fine screens upstream of the basin to prevent plugging of the screens in the basin itself. Coarse bubble aeration is required to achieve enough turbulence to ensure a good distribution of the media throughout the basin depth. The coarse air also helps to prevent plugging of the basin's screens. The free-floating media allows greater treatment capacity for a given basin volume, due to its greater surface area.

Due to the facts that the City has recently installed new fine bubble diffusers and that plant hydraulics are already a limiting factor, it was decided to concentrate on fixed media for this evaluation. The evaluation specifically considered pliable media, as it allows more biomass attachment per unit area. Should IFAS be selected, a comparison of rigid and pliable media alternatives can be made during preliminary design.

To increase the treatment capacity at the RWQCP to 52.2 mgd, both Plant 1 and Plant 2 CAS processes would have to be converted to the IFAS process. The process requirements for the conversion are summarized in Section 7.5.

Free Floating Media

Pliable Media

Fixed Media

ATTACHED GROWTH MEDIA OPTIONS

FIGURE 7.7

7.5 PROCESS MODELING OF TREATMENT ALTERNATIVES

7.5.1 Conventional Activated Sludge Alternative

Expansion using CAS would entail adding aeration basins and secondary clarifiers to the Plant 1 system. The primary effluent piping from the new Plant 1 primary clarifiers would need to be expanded. Mixed liquor piping between the Plant 1 aeration basins and secondary clarifiers would also need to be expanded. Secondary effluent piping to transfer secondary effluent to the equalization basins would also need to be expanded. The diffuser count in the existing basins would be increased from the current 588 to 694 units.

7.5.2 Membrane Bioreactor Alternative

One additional aeration basin would be required. The recycle from the membrane tank will have a high Dissolved Oxygen (DO) concentration and would inhibit denitrification if returned to the anoxic zone of the aeration basins. Instead, the membrane tank recycle will be discharged in the aerobic zone of the aeration basin. The existing mixed liquor return system in the aeration basins would be expanded from the existing 7,000 gpm to 17,000 gpm. The diffuser count in the existing basins would be increased to 1,096 units. Two of the existing secondary clarifiers would be retrofitted into membrane tanks. There would be nine trains in total. The plant would be able to operate at full capacity even with one membrane train out of service.

The MBR system in Plant 1 would treat 32.2 mgd, to give a total capacity of 52.2 mgd for the whole plant. Treated effluent would be pumped through the membrane by permeate pumps and the solids would be returned to the aeration basin by recycle pumps. WAS would be withdrawn from the return line where the MLSS concentration is at its highest.

In order to implement this alternative, fine screens (about 1-mm openings) would need to be installed. Based on the existing site configuration it is proposed that the screens would be installed to treat the primary effluent upstream of the Plant 1 aeration basins. A new pipe would be needed to convey primary effluent from the new Plant 1 primary clarifiers (Volume 4, Chapter 6 - Primary Treatment). In addition, the Plant 1 aeration basin influent channel would need to be extended for the new aeration basin. By further extending this channel, a channel is created that could house the new fine screens. However, due to the high head loss at the fine screens, there might be a need to pump the primary effluent to accommodate the screens. The hydraulic requirements should be determined during the preliminary design.

7.5.3 Integrated Fixed Film Activated Sludge Alternative

Implementing the IFAS process would mean increasing the secondary treatment capacity of both Plants 1 and 2. It is estimated that a total media surface area of 1,360,000 feet² would need to be installed in Plant 1 and 1,836,000 feet² in Plant 2. The increased biomass in the aeration basins would increase the oxygen demand, increasing required blower capacity as

February 2008 7-20

well as diffusers. The diffuser count in Plant 1 would increase to 896 units per basin and to 818 units per basin in Plant 2.

7.5.4 Process Modeling

A Biotran process model was set up for the three secondary treatment alternatives for the RWQCP. A copy of the Biotran model is included in Appendix A. The modeled plant performance characteristics are summarized in Table 7.9. Figures 7.8, 7.9, and 7.10 show the proposed layout for the CAS, MBR, and IFAS alternatives, respectively.

Table 7.9 Modeling of Secondary Treatment Alternatives for Plant 1
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

			IFAS	IFAS
Parameter	CAS	MBR	Plant 1 ⁽¹⁾	Plant 2 ⁽¹⁾
Aeration Basin Influent ⁽²⁾				
Average Flow, mgd	32.2	32.2	22.1	30.1
BOD, mg/L	160	169	164	176
TSS, mg/L	101	106	104	130
VSS, %	86	90	88	109
NH₃-N, mg/L	29.2	32.5	27.8	30.3
Organic-N, mg/L	8.7	8.9	8.8	9.8
NO ₃ -N, mg/L	0.6	0.3	0.4	0.7
Alkalinity, mg/L as CaCO₃	266	279	262	270
Filterable ("soluble") BOD, mg/L	64	67	66	63
Process Requirements				
No. of Fine Screens	N/A	4	N/A	N/A
Clear Screen Opening, mm	N/A	~1	N/A	N/A
New Aeration Basins	4	1	0	0
New Secondary Clarifiers	3	0	0	0
Membrane Tanks	N/A	2 ⁽³⁾	N/A	N/A
Tertiary Equalization Requirement	Yes	No	Yes	Yes
New Tertiary Filters ⁽⁴⁾	10	0	10	10
Aeration Basin Operating Conditions				
SRT, days	5.3	9.6	6.5	5.6
MLSS, mg/L	3,500	10,000	5,500 ⁽⁵⁾	4,500 ⁽⁵⁾

Table 7.9 Modeling of Secondary Treatment Alternatives for Plant 1
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

Parameter	CAS	MBR	IFAS Plant 1 ⁽¹⁾	IFAS Plant 2 ⁽¹⁾
WAS, lb/day	43,200	40,500	28,000	55,150
Aeration Basin Air, scfm	29,500	35,200	22,400	32,300
Scour Air, scfm	N/A	25,000 ⁽⁶⁾	N/A	N/A
Sludge Disposal, wet tons/day	206	198	20	07
Expected Secondary Effluent Quality				
BOD, mg/L	3	1	3	3
TSS (nominal), mg/L	5	0	5	5
Ammonia, mg/L as N	0.7	0.3	0.5	0.5
Total Organic Nitrogen, mg/L as N	2.7	2.3	2.6	2.6
NO ₃ -N, mg/L as N	6.9	7.3	5.4	5.4
Total Inorganic Nitrogen, mg/L	7.6	7.6	5.9	5.9
Total Nitrogen, mg/L	10.3	9.9	8.5	8.5
Turbidity, NTU	<1.0	<0.2	<1.0	<1.0

Notes:

- (1) For the IFAS alternative, it is assumed that both Plants 1 and 2 would be converted to IFAS from CAS.
- (2) The aeration basin influent quality varies for the three processes because of the effects of the different quality of the recycle streams.
- (3) Two Plant 1 secondary clarifiers would be retrofitted into membrane tanks.
- (4) For this analysis, it is assumed that if the City decides to expand the tertiary filtration facility, the new filter would be a cloth-media filter (for details refer to Volume 4, Chapter 8 Tertiary Treatment).
- (5) The MLSS concentrations for the IFAS systems are effective biomass concentration values (including attached growth) and not the actual MLSS concentration.
- (6) The scour air is required only for 15 seconds per minute during normal operation. Under high loads, the scour aeration rate can be doubled to 30 seconds per minute.

MBR effluent quality is better than the other alternatives, particularly for TSS and turbidity. Tertiary filtration is not required for this alternative. In the future, if the City has to use Reverse Osmosis (RO) treatment to meet lower dissolved salt limits or is required to have higher quality recycle water, the MBR alternative provides a distinct advantage.

Engineers...Working Wonders With Water

FACILITIES INTEGRATED MASTER PLAN

COMPARISON OF SECONDARY TREATMENT 7.6 **ALTERNATIVES**

Non-Economic Comparison 7.6.1

Table 7.10 lists some advantages and disadvantages for the three alternatives discussed above.

Fable 7.10 Advantages and Disadvantages of Secondary Treatment Alternatives Wastewater Collection and Treatment Facilities Integrated Master Plan City of Riverside			
Advantages	Disadvantages		
Alternative 1 - CAS			
Proven system with long operational history.	• Large volume and footprint requirements.		
Relatively easy to control and operate.	 Limited to MLSS concentrations in the 1,000- to 5,000-mg/L (max.) range. 		
Alternative 2 - MBR			
 Longer SRTs increase the potential for complete nitrification. 	 High MLSS and SRT means higher aeration cost. 		
 Longer SRTs enhance the oxidation of recalcitrant toxic compounds, which may be regulated in the future. 	High operating costs due to scour air requirement.		
 Stable process operation due to higher MLSS. 	 High membrane replacement costs. Most membrane units available in the market are proprietary and the units are not 		
• Longer SRTs lead to lower sludge production.	interchangeable.		
 High-quality effluent irrespective of fluctuation of influent water quality. No tertiary filtration required. 			
Small footprint.			
Alternative 3 - IFAS			
 Higher effective MLSS translates to higher aeration basin capacity. 	 New technology with limited operational history. 		
 Improved sludge settleability increases capacity of secondary clarifiers. 	 Treatment performance deteriorates at peak flow conditions. 		
Small footprint.	 Most existing installations are small plants with limited operational/performance data. Media for attached growth is proprietary. 		

7-26

• Process models are still under

development.

Table 7.11 summarizes a comparison of the three different secondary stream treatment alternatives discussed above.

Table 7.11 Comparison of Recycle Treatment Alternatives
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

	CAS	MBR	IFAS
Toxics Removal	0	+	0
EDCs Removal	0	+	0
Sludge Settleability	0	0	+
Sludge Thickenability	+	0	+
Tertiary Filters Required	YES	NO	YES
Disinfectability	0	+	0
Reliability	0	+	0
Constructability	_	0	0
Maintenance Requirements	0	_	+
Energy Input	+	_	+
Operating Experience	+	0	_
Process Complexity	0	_	0
Recovery from Upset	_	0	+

Legend:

- + = Positive comparative characteristic.
- Negative comparative characteristic.
- 0 = Neutral comparative characteristic.

7.6.2 Economic Evaluation

A life-cycle cost analysis was performed for the three process alternatives. Costs were estimated for the following three different conditions:

- 1. Treatment train with primary effluent equalization.
- 2. Treatment train without primary effluent equalization but with secondary effluent equalization.
- 3. Secondary treatment with high SRT.

A summary of the costs for the treatment train alternative with primary equalization is shown in Table 7.12.

Table 7.12 Life-Cycle Cost of Secondary Treatment Alternatives - With Primary
Effluent Equalization
Wastewater Collection and Treatment Facilities Integrated Master Plan
City of Riverside

	CAS	MBR	IFAS
Project Cost	\$103,105,000	\$118,190,000	\$104,970,000
Annual O&M Cost	\$1,150,000	\$1,800,000	\$1,120,000
Membrane/Media Replacement Cost ⁽¹⁾	N/A	\$6,610,000 ⁽²⁾	\$700,000 ⁽³⁾
Life-Cycle Cost ⁽⁴⁾	\$122,890,000	\$158,800,000	\$135,500,000

Notes:

- (1) The costs associated with replacement of diffusers and other process equipment was not included for this comparison as the costs for such items would be similar for all three alternatives.
- (2) For this analysis, it was assumed that the average membrane life is 6 years. The replacement cost includes only the cost for replacing the membranes.
- (3) The cost of media replacement was based on the assumption that about 5 percent of the media would be destroyed or lost every year.
- (4) As present value, assuming life-cycle period of 19 years, discount rate of 6 percent, and escalation rate of 6 percent for the first 5 years and 4 percent thereafter.

The table shows that CAS is the most cost effective, with IFAS the next most cost effective. To show the effect of primary effluent equalization the cost estimates for all three options without primary effluent equalization are summarized in Table 7.13.

Table 7.13	Life-Cycle Cost of Secondary Treatment Alternatives - Without
	Primary Effluent Equalization
	Wastewater Collection and Treatment Facilities Integrated Master Plan
	City of Riverside

	CAS	MBR	IFAS
Project Cost	\$95,824,000	\$126,992,000	\$98,370,000
Annual O&M Cost	\$1,152,000	\$1,624,000	\$1,120,000
Membrane/Media Replacement Cost ⁽¹⁾	N/A	\$ 6,600,000 ⁽²⁾	\$700,000 ⁽³⁾
Life-Cycle Cost ⁽⁴⁾	\$115,610,000	\$166,740,000	\$128,880,000

Notes:

- (1) The costs associated with replacement of diffusers and other process equipment was not included for this comparison as the costs for such items would be similar for all three alternatives.
- (2) For this analysis, it was assumed that the average membrane life is 6 years. The replacement cost includes only the cost for replacing the membranes.
- (3) The cost of media replacement was based on the assumption that about 5 percent of the media would be destroyed or lost every year.
- (4) As present value, assuming life-cycle period of 19 years, discount rate of 6 percent, and escalation rate of 6 percent for the first 5 years and 4 percent thereafter.

A comparison of these two tables shows that without primary effluent equalization there is an even bigger difference between MBR and the other two options. This is due to the fact that without equalization, more membrane cassettes must be installed to allow the system to handle the higher diurnal peaks. Hence, the primary effluent equalization benefits the economics of the MBR alternative. However, the costs presented above do not account for the benefits of an MBR system regarding WET. Drury et al. (1999) postulated that both high SRT and high MLSS concentration were helpful in improving effluent WET results. High SRT would enable slow growing biomass, capable of toxic compound destruction, to survive in the aeration basin. High MLSS concentrations would improve adsorption of the toxic compounds onto the biomass. As indicated in Table 7.9, the MBR alternative would have both higher SRT and MLSS concentration than the other two alternatives. The high MLSS concentration is unique to the MBR process. This means that if the Drury hypothesis is correct, the MBR process will have unique advantages regarding WET. It is assumed that EDCs would respond the same way as toxic compounds to an increase in both MLSS concentration and SRT. If the CAS and IFAS systems were to be designed for a higher SRT, the process would require additional aeration basins and secondary clarifiers. Table 7.14 shows a cost estimate that assumes operating all three processes at a high SRT.

Table 7.14	Life-Cycle Cost of Secondary Treatment Alternatives - High SRT (Without Primary Effluent Equalization)				
	Wastewater Collectio City of Riverside	n and Treatment Fa	cilities Integrat	ted Master Plan	
		CAC	MDD	IEAC	

	CAS	MBR	IFAS
Project Cost	\$139,730,000	\$126,922,000	\$137,720,000
Annual O&M Cost	\$1,095,000	\$1,624,000	\$1,053,000
Membrane/Media Replacement Cost ⁽¹⁾	N/A	\$6,600,000(2)	\$700,000 ⁽³⁾
Life-Cycle Cost ⁽⁴⁾	\$159,082,000	\$166,740,000	\$167,120,000

Notes:

- (1) The costs associated with replacement of diffusers and other process equipment was not included for this comparison as the costs for such items would be similar for all three alternatives.
- (2) For this analysis, it was assumed that the average membrane life is 6 years. The replacement cost includes only the cost for replacing the membranes.
- (3) The cost of media replacement was based on the assumption that about 5 percent of the media would be destroyed or lost every year.
- (4) As present value, assuming life-cycle period of 19 years, discount rate of 6 percent, and escalation rate of 6 percent for the first 5 years and 4 percent thereafter.

The table shows that increasing the SRT for the CAS and IFAS systems increases the capital cost for the alternative to more that that of the MBR system. The annual operating and maintenance cost is still higher for the MBR alternative. The result is that the life-cycle cost for all three alternatives are with the range of uncertainty for the cost estimates. Under these conditions life-cycle costs do not strongly favor any of the three options. Based on the

ability to achieve better effluent quality and do so more consistently, the City chose the MBR alternative for future expansion.

7.7 EXPANSION PROJECT PHASING

Current flows of approximately 33 mgd (80 percent of rated capacity) and 30-day running averages as high as 35 mgd would indicate that the RWQCP needs additional capacity. The City has no control over how fast the CSDs and the Highgrove area increase their flows into the RWQCP. And, based on housing activity in the summer of 2006, there was concern that residential development would grow faster than was currently predicted. If these occurred there was a good chance that RWQCP flows would tend toward the high-growth scenario. In addition, for a master planning process it is more prudent to plan based on conservative assumptions about future growth. For these reasons, the City chose to use the high-growth scenario (52.2 mgd and an annual growth rate of 1.5 percent) as the basis of the process alternative evaluations for the Integrated Master Plan. This decision was made at a meeting on August 31, 2006. Since that time, a slow down in the housing market has occurred, which caused the City to reevaluate the potential RWQCP influent flows for the master plan planning period. Based on the reevaluation, the City, at a meeting on September 20, 2007, decided that the lower end of the 90-percent confidence interval would be more appropriate as the basis for 2025 RWQCP flow projections. This results in an average daily flow of 47.3 mgd, which corresponds to an annual growth rate of 0.75 percent (low-growth scenario). The City therefore decided to expand the secondary treatment facilities in two phases. The first phase will expand the treatment capacity of Plant 1 from 20 mgd to 26.1 mgd and the second phase to 32.2 mgd. The capacity of Plant 2 will remain at 20 mgd.

For such a phased expansion, the City has decided to purchase MBR equipment to construct an MBR facility of 26.1 mgd. However, the Plant 1 structures will be modified to handle the final expanded flow capacity of 32.2 mgd during the first phase and the additional aeration basin would be constructed. The MBR equipment for the full capacity will be procured when actual influent flow to the RWQCP starts approaching the 46.1-mgd capacity of the first phase.

7.8 CONTROL OF EFFLUENT ORGANICS

The City presently owns and operates constructed wetlands in the Hidden Valley area. Originally developed to aid in nutrient removal, such wetlands may also be useful for reducing trace metals, complex organics, and providing a carbon matrix in the final effluent that is more similar to that found in natural streams. Due to the present regulatory environment, it is unlikely that the wetlands can be expanded at this time. However, the City plans to continue to use the existing wetlands as an effluent polishing treatment process.

7.9 ODOR CONTROL

The City requested that Carollo investigate covering of secondary clarifiers for odor concerns. While secondary clarifiers are not typically prime sources of odor in a wastewater treatment plant, some owners choose to cover the clarifiers for aesthetic reasons. For this evaluation, it was assumed that only the effluent weirs would be covered, as the hydraulic conditions at the weirs would promote the bulk of any released odor. A typical weir cover is shown on Figure 7.11 for a circular clarifier. The weir cover for a rectangular clarifier would require some additional elements to support it above the weir, as shown on Figure 7.12. In addition to the weir covers, the odor control system would include blowers to collect the headspace air, some form of odor control system such as a biofilter, and the required ducting. Additional evaluation of secondary clarifier odor control would be done during preliminary design if the City decides to pursue it further.

7.10 RETURN ACTIVATED SLUDGE/WASTE ACTIVATED SLUDGE PUMPING

Selection of RAS/WAS pumps is based on the flow and head characteristics of the RAS/WAS. Final selection of the pump types will be determined during preliminary design when the flow and head characteristics are known.

7.11 REFERENCE

Drury D, Clifton N., Todd A.C., Buhr H.O. and Moore T. Operating and Designing Municipal Wastewater Treatment Plants to Treat Toxicity, WEFTEC (October 1999), New Orleans, LA.

Engineers...Working Wonders With Water

TYPICAL WEIR COVER FOR RECTANGULAR CLARIFIERS

FIGURE 7.12

A-1

BIOTRAN MODEL

CAROLLO ENGINEERS, PC											
W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE PROJECT: REGIONAL WATER QUALITY CON											
BUBJECT: PROCESS ANALYSIS AND MASS alc by Date Time Chk by/Date											
FP,NV 02/27/2008 1:50 PM iotran05 v.1106	Ch07-AppA.xls										1
		Conv. ASP)-high SR Plant 2 Combine		apacity (MBR) Plant 2 Comb		apacity (EPT) Plant 2 Con	Design Capacity (nbined Plant 1		igh SRT mbined	Setup info	Basis
Annual Average Plant Flow, mgd Design (Max-Month) Flow, mgd	* 32.0 35.5	20.0 52 22.2 57			52.0 32.0 57.7 35.5	20.0 22.2	52.0 22.0 57.7 24.4	30.0 33.3	52.0 57.7		
NOTES regarding this application:	With Better Sludge 60:40 Recycle Spl Based on aeration APAD Centrifuge, not BP	t capacity	MBR With Better Sludge 80:20 Recycle Spl Based on aeration APAD Centrifuge, not BF	lit capacity	With Better Sludge 60:40 Recycle Splir Based on aeration APAD Centrifuge, not BP	t	With Better Sludge 30:70 Recycle Spl Based on aeration APAD Centrifuge, not BP	it capacity			•
SUMMARY:											
FLOW RATES, mgd: - Raw WW Flow - Flow to Primaries - Flow to Activated Sludge	35.5 40.6 39.2	22.2 25.6 25.3	35.5 39.3 37.8	22.2 23.2 23.0	35.5 41.0 39.1	22.2 25.9 25.0	24.4 26.9 26.0	33.3 39.0 38.4			
SECONDARY EFFLUENT QUALITY, mg/L: BOD (est.), mg/L TSS (nominal), mg/L NH3-N, mg/L NO3/NO2-N, mg/L T.I.N., mg/L	2 5 0.26 6.7 7.0	2 4 0.40 7.4 7.8	1 0 0.24 7.4 7.6	2 4 0.29 6.6 6.9	2 5 0.46 7.5 8.0	2 4 0.87 7.7 8.6	2 5 0.19 5.4 5.6	2 4 0.42 7.2 7.7			
PRIMARY CLARIFIERS # of Clarifiers # in Service Surface Overflow Rate, gpd/sf	4 4 897	4 4 902	4 4 869	4 4 817	4 4 907	4 4 913	4 4 948	4 4 1,376			
AERATION BASINS # of Basins # in Service Hydraulic Deten. Time, hr Operating Last-Pass MLSS, mg/L Design Temperature, deg C Unaerated Volume Fraction Aerobic SRT, days - Min. Aerobic SRT for Nitrification Total SRT, days - Recommended Min. Total SRT for Nitrification F/M, lb BOD Appl./lb MLSS-day Aer. BOD Loading, lb BOD/1000 cf-day ML Recirculation Ratio Process Air (est.), scfm	12 11 6.8 3,500 20.0 0.25 5.95 5.46 7.93 7.28 0.21 47 2.5 19,300	6 7.5 2,5000 20.0 0.40 3.52 4.41 5.87 7.35 0.33 52 2.0 12,910	13 13 3.6 10,000 20.0 0.45 5.23 5.03 8.37 8.04 0.24 127 3.2 25,000	6 8.2 2,500 20.0 0.40 4.08 4.41 6.80 7.35 0.31 49 2.2	8 8 5.0 3,500 20.0 0.50 4.41 4.68 8.83 9.36 0.31 67 2.5	6 6 7.5 2,500 20.0 0.60 3.93 5.38 9.84 13.46 0.35 55 2.0 8,780	6 5.6 5,500 20.0 0.25 8.13 5.76 10.84 7.68 0.17 58 2.3	6 4.9 4.500 20.0 0.40 3.39 4.41 5.64 7.35 0.31 88 2.0 23,600			Selected Selected
#EMBRANE BIO-REACTOR # of Membrane Zones (Basins) # of Membrane Cassettes per Zone Total Membrane Modules (Elements) Total Membrane Area, sf Average Operating Flux, gfd Normal Daily Peak Flux, gfd One Membrane Zone Out of Service, gfd Scrubbing Air Blowers Installed (1 standby) Blower Capacity, each, scfm Blower Motor Size, each, hp			8 18 7,022 2,387,383 15.6 20.1 23.0 9 1,200 60								

CAROLLO ENGINEERS, PC															
W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE															
PROJECT: REGIONAL WATER QUALITY OF															
SUBJECT: PROCESS ANALYSIS AND MA															
Calc by Date Time Chk by/E	Date FileName:														
CFP,NV 02/27/2008 1:50 PM	Ch07-AppA.xls														
Biotran05 v.1106															
		apacity (Conv.				pacity (MBR			apacity (EPT		Design Capacity (Setup	Basis
	Plant 1	Plant	2 Comb	bined	Plant 1	Plant 2 C	ombined	Plant 1	Plant 2 C	Combined	Plant 1	Plant 2 C	ombined	info	
Annual Average Plant Flow, mgd			20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd		35.5 2	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		-
SECONDARY CLARIFIERS															
- # of Basins		7	4			4		7	4		4	5			
- # in Service		6	4			4		6	4		4	5			
 Sec. Clarifier SOR, gpd/sf 			589			537		737	587		731	683			
 Sec. Clar. Solids Loading, lb/day-sf 		29	16			15		29	16		54	37			
- Clarifier Safety Factor (CSF)			3.0			3.3		2.4	3.1		1.6	2.1			
CSF Target		2.3	2.3			2.3		2.3	2.3		2.3	2.3			
DETAILED CALCULATIONS:															
RAW WASTEWATER (excluding Recycles)	Î														I
o Plant Flow Rate, mgd		35.5 2	22.2		35.5	22.2		35.5	22.2		24.4	33.3			
o Flow Characteristic Ratios		20.0			00.0			00.0			27.7	00.0			
- Max Month/Annual Avg	*	1.11	1.11		1.11	1.11		1.11	1.11		1.11	1.11			Default
- Peak 4-hr Wet-W Flow/Annual Avg	*		2.2		2.2	2.2		2.2	2.2		2.2	2.2			Default
Typical 4-hr Diurnal Peak/Daily Avg	*		1.3		1.3	1.3		1.3	1.3		1.3	1.3			Default
o Wastewater Characteristics								1.0							Doladii
- BOD, mg/L, Annual Average	*	250	250		250	250		250	250		250	250			Default
Mass Load (lb/d) Peaking Factor			1.25		1.25	1.25		1.25	1.25		1.25	1.25			
Effective BOD, mg/L			282		282	282		282	282		282	282			
"Effective" concentrations correspond to Peak M	ass Loads with the			Iculation											
- TSS, mg/L, Annual Average	*		250		250	250		250	250		250	250			Default
Mass Load (lb/d) Peaking Factor	*	1.25	1.25		1.25	1.25		1.25	1.25		1.25	1.25			
Effective TSS, mg/L		282	282		282	282		282	282		282	282			
- Fpv, VSS fraction	*	0.83	0.83		0.83	0.83		0.83	0.83		0.83	0.83			Default
Effective VSS, mg/L		234	234		234	234		234	234		234	234			
- NH3-N, mg/L, Annual Average	*	21.0 2	21.0		21.0	21.0		21.0	21.0		21.0	21.0			Default
Mass Load (lb/d) Peaking Factor	*	1.25	1.25		1.25	1.25		1.25	1.25		1.25	1.25			
Effective NH3-N, mg/L		23.6 2	23.6		23.6	23.6		23.6	23.6		23.6	23.6			
Organic-N, mg/L, Annual Average	*	14.5	14.5		14.5	14.5		14.5	14.5		14.5	14.5			Default
Mass Load (lb/d) Peaking Factor	*	1.25	1.25		1.25	1.25		1.25	1.25		1.25	1.25			
Effective Org-N, mg/L			16.3		16.3	16.3		16.3	16.3		16.3	16.3			
 NO3-N, mg/L, Annual Average 	*	0	0		0	0		0	0		0	0			Default
 Alkalinity, mg/L, Annual Average 	*	250	250		250	250		250	250		250	250			Default
- Filterable ("soluble") BOD															
fraction, Fbf	*		0.25		0.25	0.25		0.25	0.25		0.25	0.25			Default
mg/L		70	70		70	70		70	70		70	70			
 Fvu, Fraction VSS that is Unbiodeg 			600		0.600	0.600		0.600	0.600		0.600	0.600			Estimated
 Total Phosphorus, mg/L, Annual Average 			11.0		11.0	11.0		11.0	11.0		11.0	11.0			Default
 Mass Load (lb/d) Peaking Factor 			1.25		1.25	1.25		1.25	1.25		1.25	1.25			
Effective Total-P, mg/L			12.4		12.4	12.4		12.4	12.4		12.4	12.4			L .
Fraction filterable ("soluble")			0.32		0.32	0.32		0.32	0.32		0.32	0.32			Default
Filterable P, mg/L	1	3.94	3.94		3.94	3.94		3.94	3.94		3.94	3.94			
- Design Terrorenture de C															
o Design Temperature, deg. C	*	20	20		00	00		00	00		00	00			Defects
- Minimum (Winter)	*	20	20		20	20		20	20		20	20			Default
- Maximum (Summer)	ĵ.	29	29		29	29		29	29		29	29			Default
- Design		20	20		20	20		20	20		20	20			Winter
RECYCLE TO HEADWORKS/PRIM CLAR.S o Flow Rate, mgd															
- Filter Backwash	* 3	.440 2.	293	5.733	1.632	0.408	2.041	3.442	2.295	5.736	1.719	4.012	5.731		

W.O./CLIENT: 472A.00 / CITY OF RIVERSIDE PROJECT: EGIONAL WATER QUALITY CONTROL PLANT PROCESS ANALYSIS AND MASS BALANCE SUBJECT: Calc by 02/27/2008 1:50 PM Biotran05 v.1106 Design Capacity (Conv. ASP)-high SRT Design Capacity (MBR) Design Capacity (EPT) Design Capacity (Conv. IFAS)-high SRT Setup Basis Plant 1 Plant 2 Combined info Annual Average Plant Flow, mgd 32.0 20.0 52.0 32.0 20.0 52.0 32.0 20.0 52.0 22.0 30.0 52.0 Design (Max-Month) Flow, mgd 57.7 35.5 35.5 22.2 57.7 57.7 35.5 222 222 57.7 24 4 33.3 - Primary Sludge Thickener Supernatant 1.450 0.967 2.417 1.954 0.488 2.442 1.902 1.268 3.170 0.646 1.508 2.154 Total 5.052 3.368 3.802 0.950 5.509 3.673 2.446 5.707 Wastewater Characteristics, mg/L - Total Recycle -- BOD 173 173 308 308 222 222 162 162 -- TSS 342 510 342 288 288 301 301 510 -- VSS 237 237 399 399 260 260 226 226 -- NH3-N 66 66 116 116 57 57 66 66 -- Organic-N 15 15 23 23 16 16 15 15 -- NO3/NO2-N 5 3 3 5 5 5 5 5 -- Alkalinity 378 378 559 559 343 343 378 378 -- Filterable ("soluble") BOD 26.5 26.5 48.3 48.3 28.1 28.1 25.4 25.4 -- Total soluble Organic N 3.0 3.0 3.5 3.5 3.1 3.1 3.0 3.0 -- Fpv, VSS fraction 0.79 0.79 0.78 0.78 0.76 0.76 0.78 0.78 - Fvu. Fraction VSS that is Unbioded 0.700 0.700 0.700 0.700 0.700 0.700 Default 0.700 0.700 PRIMARY TREATMENT In Service o Flow Rate, mgd - Raw Wastewater 35.5 22.2 35.5 22.2 35.5 22.2 24.4 33.3 - Recycle stream 5.05 3.37 3.80 0.95 5.51 2.45 5.71 3.67 - Total Influent 40.6 25.6 39.3 23.2 41.0 25.9 26.9 39.0 Wastewater Characteristics, mg/L - BOD 268 284 283 274 273 271 264 267 - TSS 284 284 304 291 290 290 282 282 234 237 - VSS 234 250 240 237 233 232 - NH3-N 29 28 29 33 27 28 28 30 - Organic-N 16 17 17 16 16 16 16 16 NO3-N 0 0 0 266 267 280 263 262 263 262 269 - Alkalinity - Filterable ("soluble") BOD 65 68 69 65 65 64 66 64 - Fpv, VSS fraction 0.82 0.82 0.82 0.83 0.82 0.82 0.83 0.82 o Basin dimensions (inside) Basins Set - 1,2,3,4 4 - Number of Basins - Number of Units in Service 4 Diameter, ft 120 120 95 120 95 95 95 95 12 12 - Side Water Depth, ft 12 12 7.088 7.088 7.088 7.088 Surface Area per Basin, sf 11.310 11.310 11.310 7.088 - Surface Area in Service, sf 45,239 28.353 45,239 28,353 45,239 28.353 28,353 28,353 - Basins Set - 5,6 - Number of Basins 0 0 0 0 0 0 0 0 - Number of Units in Service 0 0 0 0 0 0 0 0 Diameter, ft 0 0 0 0 0 0 0 0 - Side Water Depth, ft 0 0 0 0 - Surface Area per Basin, sf 6,050 0 6,050 0 6,050 0 6,050 0 - Surface Area in Service, sf Λ Λ 0 Λ 0 0 0 Λ - Total Surface Area in Service, sf 45,239 28,353 45,239 28,353 45,239 28,353 28,353 28,353 Surface Overflow Rate, gpd/sf - At Design Flow 897 902 869 817 907 913 948 1,376 - At Diurnal Peak Flow 1,050 1,056 1,018 956 1,062 1,069 1,110 1,611 - At Peak WW Flow 1,778 1,787 1.723 1.618 1.798 1.809 1,878 2.727 o Detention Time, hr 2.4 18 2.5 2.0 2.4 1.8 2.3 12

Chemically Enhanced Primary Treatment
 CEPT applied? [Y=1; N=0]

Default

0

0

0

0

0

0

W.O./CLIENT: 472A.00 / CITY OF RIVERSIDE

PROJECT: SUBJECT: Calc by REGIONAL WATER QUALITY CONTROL PLANT PROCESS ANALYSIS AND MASS BALANCE
Time Chk by/Date FileName:

	Design Capacity				apacity (MBF			Capacity (EPT		Design Capacity (Setup	Bas
	Plant 1	Plant 2 (Combined	Plant 1	Plant 2 (Combined	Plant 1	Plant 2	Combined	Plant 1	Plant 2 (Combined	info	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
 Ferric Chloride dosage, mg/L as FeCl3 FeCl3 used, lb/d 	* 10 0	10 0		10 0	10 0		10 3,422	10 2,158		10 0	10 0			Default
- Polymer dosage, mg/L	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			Default
Polymer used, lb/d	0	0		0	0		0	0		0	0			
- Chem Sludge Generated, lb/d		•			•		0.400	0.407						
Total, lb/d - Alkalinity Reduction, mg/L	0	0		0	0		3,483 6	2,197 6		0 0	0 0			
Removal Efficiency, %		O		· ·	O		O	O		Ü	U			
BOD Removal, %	40.3	40.3		40.7	41.5		59.0	58.9		39.6	33.5			
TSS Removal, %	64.4	64.3		65.0	66.1		79.0	78.8		63.3	53.9			
Non-volatile SS %, Rpn Organic-N Removal, %	69.6 46.5	69.5 46.4		70.3 47.4	71.4 47.6		80.7 56.7	80.5 56.6		68.5 45.6	58.4 39.2			
Primary Sludge	40.5	40.4		41.4	47.0		30.7	50.0		45.0	35.2			
- Solids removed, lb/d														
Non-chemical primary solids	63,163	39,762		66,122	37,882		79,326	49,991		40,860	50,873			
Chemical solids from CEPT	0	0	400.005	0	0	404.000	3,483	2,197	404.007	0	0	04.704		
Total solids removed - Concentration, %	63,163 * 0.5	39,762 0.5	102,925	66,122 0.5	37,882 0.5	104,003	82,809 0.5	52,188 0.5	134,997	40,860 0.5	50,873 0.5	91,734		Defau
Flow Rate, mgd	1.515	0.954		1.586	0.908		1.986	1.252		0.980	1.220			Delau
Organic N removed, lb/d	2,654	1,670		2,757	1,592		3,263	2,054		1,723	2,150			
Primary Effluent Flow, mgd	39.1	24.6		37.7	22.2		39.0	24.6		25.9	37.8			
Primary Effluent, mg/L · BOD	160	160		168	165		112	112		163	175			
- BOD - TSS	101	101		106	99		61	61		104	175			
- VSS	86	86		90	84		51	51		88	109			
- NH3-N	29.0	29.3		32.6	27.4		28.1	28.3		27.5	29.8			
- Organic-N	8.66	8.66		8.93	8.70		7.03	7.04		8.81	9.78			
- NO3-N - Alkalinity	0.6 266	0.7 267		0.3 280	0.1 263		0.7 262	0.7 263		0.4 262	0.7 269			
- Filterable ("soluble") BOD	65	65		68	69		61	60		66	64			
CYCLE TO ACTIVATED SLUDGE														
Flow Rate, mgd - DAF Underflow	* 0.000	0.585	0.585	0.000	0.000	0.693	0.000	0.252	0.352	0.000	0.547	0.517		
- DAF Underliow - Stream 2	* 0.000	0.585	0.565	0.000	0.693 0.000	0.093	0.000	0.352 0.000	0.352	0.000	0.517 0.000	0.517		
- Stream 3	* 0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000			
Spray Water to Basins	* 0.096	0.060		0.096	0.060		0.096	0.060		0.066	0.090			Defau
· Total	0.096	0.645		0.096	0.753		0.096	0.412		0.066	0.607			
Wastewater Characteristics, mg/L - Total Recycle														
BOD	0	191		0	156		0	174		0	217			
TSS	0	654		0	546		0	632		0	792			
VSS	0	553 0		0	461 0		0 0	531 1		0	664 0			
NH3-N Organic-N	0	44		0	36		0	42		0	51			
- NO3-N	0	6		0	6		0	7		0	6			
Alkalinity	0	127		0	130		0	119		0	121			
Filterable ("soluble") BOD	0.0	1.0		0.0	1.0		0.0	0.9		0.0	1.0			
Total soluble Organic N Fpv, VSS fraction	0.0 0.00	2.2 0.85		0.0 0.84	2.1 0.84		0.0 0.00	2.0 0.84		0.0 0.00	2.0 0.84			
i pv, voo ilaction	* 0.700	0.700		0.84	0.84		0.00	0.700		0.00	0.700			Defau

7472A.00 / CITY OF RIVERSIDE
REGIONAL WATER QUALITY CONTROL PLANT PROCESS ANALYSIS AND MASS BALDE
PROCESS ANALYSIS AND PROCE PROJECT: SUBJECT:

Calc by Date Time Chk by/Date CFP,NV 02/27/2008 1:50 PM	FileName: Ch07-AppA.xls													
Biotran05 v.1106	Design Capacit	· · (Cam·· ACD)	himb CDT	Danier (Consoits (MDD)	\	Design	Conneity (EDT)		Decies Consoit	· (Came IEAG	C) bisch CDT	Setup	Basis
	Plant 1		Combined	Plant 1	Capacity (MBR Plant 2 C	ombined	Plant 1	Capacity (EPT) Plant 2 C	ombined	Design Capacity Plant 1		Combined	info	Dasis
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
Flow Rate, mgd														
- Main-Stream Influent	39.06	24.61		37.74	22.24		39.04	24.62		25.89	37.79			
- Recycle directly to AS	0.10	0.65		0.10	0.75		0.10	0.41		0.07	0.61			
- Total to Activated Sludge	39.15	25.26		37.83	22.99		39.14	25.03		25.95	38.39			
Influent Characteristics, mg/L														
- Total BOD	160	161		168	165		112	113		163	176			
- TSS	101	116		106	113		61	71		103	141			
- VSS	86	98		90	97		51	59		88	118			
- NH3-N - Organic-N	29 9	29 10		32 9	27 10		28 7	28 8		27 9	29 10			
- NO3-N	1	10		0	0		1	1		0	10			
- Alkalinity	265	263		279	258		262	261		261	266			1
- Filterable ("soluble") BOD	65	63		68	67		61	59		66	63			
- Fpv, VSS fraction	0.85	0.85		0.85	0.85		0.83	0.83		0.85	0.84			
- AB Influent D.O. Concentration, mg/L	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0			1
Basin dimensions														
- Main Basins				MBR								For MB	R, MBR	
No. of Basins	* 12	6		5	6		8	6		6	6			1
Number of Units in Service	* 11	6		5	6		8	6		6	6			1
Length, ft (inside)	* 200	250		200	250		200	250		200	250	dimen		1
Width, ft (inside)	* 40	40		40	40		40	40		40	40	in the		1
Side Water Depth, ft	* 16.9	17.5		16.9	17.5		16.9	17.5		16.9	17.5			
Recomm inside Wall height, incl. Freeboard, ft	19.9	20.5		22.9	20.5		19.9	20.5		19.9	20.5	sectio		
Liquid Volume per Basin, mil gal - Supplemental Basins or Sections	1.01	1.31		1.01	1.31		1.01	1.31		1.01	1.31	(not HEI	RE) 0.00	
- Identification	*			Membrn Zn								calcs	Membrn Zr	
No. of Basins	* 0	0		8	0		0	0		0	0	Caics	Niembin Zi	i
Number of Units in Service	* 0	Ö		8	0		0	Ö		0	0	into	0	
Length, ft (inside)	* 200	200		19.5	200		200	200		200	200	< the	se 0	
Width, ft (inside)	* 40	100		75	100		40	100		40	100	column		,
Side Water Depth, ft	* 16.9	17		11.9	17		16.9	17		16.9	17		0	1
Volume per Basin, mil gal	1.01	2.54		0.13	2.54		1.01	2.54		1.01	2.54		0.00	1
Total Volume of Basins, mil gal														
- Total Basin volume in service	11.12	7.85		6.10	7.85		8.09	7.85		6.07	7.85			
Reduction for MBR cassettes	0.00	0.00		0.41	0.00		0.00	0.00		0.00	0.00			
- Biological Reaction Volume	11.12	7.85		5.69	7.85		8.09	7.85		6.07	7.85			1
Aerated Zone BOD Loading, lb/1,000 cf-day	46.5	52.0 7.46		126.8	48.7 8.20		67.3	54.9		57.6	87.8			1
Hydraulic Detention Time, hr Selected Operating L-P MLSS, mg/L	6.82 3,500	2,500		3.61 10,000	2,500		4.96 3,500	7.53 2,500		5.61 5,500	4.91 4,500			
ROCESS LAYOUT														
Zone Sizes (Fraction of Total Volume)														Selecte
- Zone 1	* 0.125	0.186		0.225	0.186		0.125	0.186		0.125	0.186	For MB		
- Zone 2	* 0.125	0.214		0.225	0.214		0.125	0.214		0.125	0.214	Сору		
- Zone 3	* 0.000	0.000		0.225	0.000		0.000	0.000		0.000	0.000	& Pasi		1
- Zone 4	* 0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000	these -		1
- Zone 5	* 0.250	0.200		0.000	0.200		0.250	0.200		0.250	0.200	calcs in		1
- Zone 6	* 0.250	0.200		0.225	0.200		0.250	0.200		0.250	0.200	< the		
- Zone 7 (by difference)	0.250	0.200		0.100	0.200		0.250	0.200		0.250	0.200	column		1
Total DO in each Zone (Unaerated, Set = 0), mg/L	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000		0.000	1
- Zone 1	* 0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	For MB	R, 0.0	J
- Zone 1 - Zone 2	* 0.0	0.0 0.0		0.0	0.0 0.0		0.0	0.0 0.0		0.0	0.0 0.0	Adjus	,]
- Zone 2 - Zone 3	* 0.0	2.0		0.0 0.5	2.0		0.0	0.0		0.0	2.0	D.O. a		1
2010 0	1 0.0	2.0		0.5	2.0		0.0	0.0		0.0	2.0	D.O. a	2.0	1

_					
\sim	VI I	$\overline{}$	101	NIE.	,

REGIONAL WATER QUALITY CONTROL PLANT - PROCESS ANALYSIS AND MASS BALANCE PROJECT: SUBJECT:

iotran05 v.1106	Design Capacity	(Conv. ASP)-h	nigh SRT	Design C	apacity (MBR)		Design C	apacity (EPT)		Design Capacity (Conv. IFAS)-h	nigh SRT	Setup	Basis
	Plant 1		ombined	Plant 1		ombined	Plant 1		ombined			ombined	info	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
- Zone 4	* 0.0	2.0		2.0	2.0		0.0	0.0		0.0	2.0	needed,	2.0	
- Zone 5	* 0.2	2.0		2.0	2.0		0.0	0.0		0.1	2.0	except for	2.0	
- Zone 6	* 2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	Zone 7	2.0	
- Zone 7	* 2.0	2.0		1.5	2.0		2.0	2.0		2.0	2.0	< copy	0.0	
Aerated/Unaerated Fractions														
- Total Unaerated Volume Fraction	0.25	0.40		0.45	0.40		0.50	0.60		0.25	0.40			
 Total Unaerated Volume, mil gal 	2.78	3.14		2.56	3.14		4.05	4.71		1.52	3.14			
- Total Aerated Volume Fraction	0.75	0.60		0.55	0.60		0.50	0.40		0.75	0.60			
 Total Aerated Volume, mil gal 	8.34	4.71		3.13	4.71		4.05	3.14		4.55	4.71			
- Total Aerated Mass Fraction	0.75	0.60		0.63	0.60		0.50	0.40		0.75	0.60			
Plant Influent Flow Routing														
- Fraction to Zone 1	* 1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00			Default
- Fraction to Zone 2	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			Default
- Fraction to Zone 3	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			Default
- Fraction to Zone 4	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			Default
- Fraction to Zone 5	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			Default
- Remainder to Zone 6	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
Return Sludge Routing														
- Fraction to Zone 1	* 1.00	1.00		0.00	1.00		1.00	1.00		1.00	1.00			Default
- Fraction to Zone 2	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			Default
- Remainder to Zone 3	0.00	0.00		1.00	0.00		0.00	0.00		0.00	0.00			
Mixed-Liquor Recirculation Routing														
 MLR Taken from Zone (3, 4, 5, 6, 7) 	* 7	7		6	7		7	7		7	7			Default
 MLR Returned to Zone (1, 2, 3, 4, 5) 	* 1	1		1	1		1	1		1	1			Default
- MLR Flow, mgd	96.00	50.00		120.00	50.00		96.00	50.00		60.00	75.00			
- MLR Ratio	2.45	1.98		3.17	2.17		2.45	2.00		2.31	1.95			
Sludge Wasting Method			_									For MBR,		
 Wasting from RAS (1) or ML (0) 	* 1	1		0	1		1	1		1	1	< copy		Default
If ML, Waste taken from Zone # (1, 2, 7)	* (RAS)	(RAS)		7	(RAS)		(RAS)	(RAS)		(RAS)	(RAS)	< copy	7	Default
OADING CRITERIA														
BOD Applied, lb/d	F2 400	22.042		F2 042	24.642		20 524	22.052		25 200	EC 400			
- Total Influent	52,109 228	33,813		53,012	31,643 980		36,531	23,652 598		35,290	56,403			1
- (-) WAS Recycled - Net BOD Load		1,028		0 53.013			159			225	1,100			1
	51,881 243,533	32,785		53,012	30,663 98,225		36,373 118,074	23,054 65,491		35,065	55,303 176,793			
MLSS under aeration, lb - F/M, lb BOD Appl./lb MLSS-day	243,533	98,205 0.33		218,609 0.24	0.31		0.31	0.35		208,756 0.17	0.31			l
Organic Loading, Based on Aerated Zone	0.21	0.33		0.24	0.31		0.31	0.35		0.17	0.31			1
- Aerated Volume in Service, 1,000 cf	1,115	630		418	630		541	420		608	630			l
- Aer. BOD Loading, lb BOD/1000 cf-day	1,115	52.0		126.8	48.7		541 67.3	420 54.9		57.6	630 87.8			1
	40.5	5∠.0		120.8	40.7		07.3	54.9		0.10	07.0			1
Unaerated Zone	0.45	0.91		0.39	0.94		0.66	1.36		0.36	0.58			l
- Actual HRT (Throughflow), hr	0.45	0.91		0.39	0.94		0.00	1.30		0.36	0.56			l
- Mixing Power, total	* 07.2	110.0		90.6	110.0		111 6	164.0		E2 1	110.0			
Total BHP, all Unaerated Zones Mixing, hp/mil gal	* 97.3 35	110.0 35		89.6 35	110.0 35		141.6 35	164.9 35		53.1 35	110.0 35			1
winning, rip/mili gai	35	33		ან	33		ან	33		ან	33			
CTIVATED SLUDGE - ZONE 1	Un-Aer	Un-Aer		Un-Aer	Un-Aer		Un-Aer	Un-Aer		Un-Aer	Un-Aer			
Zone Volume, mil gal	1 1.391	1.461		1.280	1.461		1.011	1.461		0.758	1.461			1
Flows Entering, mgd	1						*****							1
- Plant Influent Flow	1 39.15	25.26		37.83	22.99		39.14	25.03		25.95	38.39			l
- RAS Stream	1 13.01	7.99		0.00	7.27		13.01	7.91		15.66	16.87			1
- Centrate	* 0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- ML Recirculation	1 96.00	50.00		120.00	50.00		96.00	50.00		60.00	75.00			ĺ

W.O./CLIENT: 472A.00 / CITY OF RIVERSIDE

REGIONAL WATER QUALITY CONTROL PLANT PROCESS ANALYSIS AND MASS BALANCE
Time Chk by/Date FileName: PROJECT: SUBJECT: Calc by

Biotran05 v.1106		A												. .	
	Design Plar		Conv. ASP)-h Plant 2 Co	igh SRT ombined	Design C Plant 1	apacity (MBR Plant 2 C) combined	Design (Plant 1	Capacity (EPT) Plant 2 C	ombined	Design Capacity Plant 1)-high SRT Combined	Setup info	Basis
Annual Average Plant Flow, mgd	*	32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd		35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
- Total Flow to this Zone	1	148.17	83.25		157.83	80.26		148.15	82.95		101.62	130.26			
ML Flow removed from this Zone, mgd	1														
 ML Recirculated to Other Zones 	1	n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a			
 ML Wasted from this Zone 	1	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Other ML Flow removed from this Zone 	*	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Net ML Flow to Next Zone, mgd 	1	148.17	83.25		157.83	80.26		148.15	82.95		101.62	130.26			
HRT in this Zone	1														
 Hydraulic Detention time, Actual, hr 	1	0.23	0.42		0.19	0.44		0.16	0.42		0.18	0.27			
Effluent from this Zone	1														
MLSS, mg/L	1	3,500	2,498		6,134	2,499		3,501	2,502		5,502	4,497			
NH3-N, mg/L	1	7.67	8.83		8.43	7.73		7.51	8.85		7.03	8.88			
NO3-N, mg/L	1	2.12	1.34		1.74	0.78		3.24	1.96		1.13	1.25			1
D.O., mg/L	1	0.01	0.00		0.00	0.00		0.01	0.00		0.01	0.00			1
o Biological Growth Summary	1														
- Increase in VSS, lb/d	1	5,943	3,690		5,537	3,568		5,713	3,672		3,974	5,455			
- Increase in ISS, lb/d	1	533	354		528	338		498	336		354	531			
ACTIVATED SLUDGE - ZONE 2		Un-Aer	Un-Aer		Un-Aer	Un-Aer		Un-Aer	Un-Aer		Un-Aer	Un-Aer			
o Zone Volume, mil gal	2	1.391	1.681		1.280	1.681		1.011	1.681		0.758	1.681			
o Flows Entering, mgd	2				1.200			1.011			0.700	1.001			
- Throughflow	2	148.17	83.25		157.83	80.26		148.15	82.95		101.62	130.26			
- Plant Influent to this Zone	2	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- RAS Stream	2	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			1
- ML Recirculation	2	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- Total Flow to this Zone	2	148.17	83.25		157.83	80.26		148.15	82.95		101.62	130.26			
ML Flow removed from this Zone, mgd	2														
- ML Recirculated to Other Zones	2	n/a	n/a		n/a	n/a		n/a	n/a		n/a	n/a			
- ML Wasted from this Zone	2	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			1
Other ML Flow removed from this Zone	*	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
Net ML Flow to Next Zone, mgd	2	148.17	83.25		157.83	80.26		148.15	82.95		101.62	130.26			
HRT in this Zone	2				.000	- 5.20			-2.00		7002	. 50.20			1
Hydraulic Detention time, Actual, hr	2	0.23	0.48		0.19	0.50		0.16	0.49		0.18	0.31			
o Effluent from this Zone	2				20			20			2.10				
MLSS, mg/L	2	3,500	2,495		6,133	2,495		3,501	2,500		5,501	4,494			
NH3-N, mg/L	2	7.92	9.26		8.74	8.30		7.68	9.18		7.35	9.35			1
NO3-N, mg/L	2	0.81	0.04		0.29	0.01		2.00	0.34		0.11	0.02			
D.O., mg/L	2	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
o Biological Growth Summary	2				2.30			2.30			2.00	2.50			
- Increase in VSS, lb/d	2	-480	-1,857		-2,178	-2,752		505	-845		-943	-3,546			
- Increase in ISS, lb/d	2	-4	-88		-118	-144		63	-33		-52	-177			
ACTIVATED SLUDGE - ZONE 3		N.I.S.	N.I.S.		Aerated	N.I.S.		N.I.S.	N.I.S.		N.I.S.	N.I.S.			1
Zone Volume, mil gal	3	0.000	0.000		1.280	0.000		0.000	0.000		0.000	0.000			1
Flows Entering, mgd	3														
- Throughflow	3	148.17	83.25		157.83	80.26		148.15	82.95		101.62	130.26			
 Plant Influent to this Zone 	3	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			1
- RAS Stream	3	0.00	0.00		151.33	0.00		0.00	0.00		0.00	0.00			
- ML Recirculation	3	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			1
 Total Flow to this Zone 	3	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
ML Flow removed from this Zone, mgd	3														
 ML Recirculated to Other Zones 	3	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 ML Wasted from this Zone 	3	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Other ML Flow removed from this Zone 	*	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Net ML Flow to Next Zone, mgd 	3	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			1

7472A.00 / CITY OF RIVERSIDE REGIONAL WATER QUALITY CONTROL PLANT -PROCESS ANALYSIS AND MASS BALANCE PROJECT: SUBJECT:

CFP,NV 02/27/2008 1:50 PM															
Siotran05 v.1106	Des	ign Capacity	(Conv. ASP)-h	igh SRT	Desian C	apacity (MBR))	Desian C	apacity (EPT)) 1	Design Capacity	(Conv. IFAS	S)-high SRT	Setup	Basis
		Plant 1		ombined	Plant 1		ombined	Plant 1	Plant 2 C		Plant 1		Combined	info	
Annual Average Plant Flow, mgd	*	32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0			
Design (Max-Month) Flow, mgd		35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
HRT in this Zone	3														
 Hydraulic Detention time, Actual, hr 	3	0.00	0.00		0.10	0.00		0.00	0.00		0.00	0.00			
o Effluent from this Zone	3														
MLSS, mg/L	3	3,500	2,495		8,026	2,495		3,501	2,500		5,501	4,494			
NH3-N, mg/L	3	7.92	9.26		2.72	8.30		7.68	9.18		7.35	9.35			
NO3-N, mg/L	3	0.81	0.04		5.26	0.01		2.00	0.34		0.11	0.02			
D.O., mg/L	3	0.00	0.00		0.50	0.00		0.00	0.00		0.00	0.00			
o Biological Growth Summary	3														
 Increase in VSS, lb/d 	3	0	0		211	0		0	0		0	0			
- Increase in ISS, Ib/d	3	0	0		426	0		0	0		0	0			
ACTIVATED SLUDGE - ZONE 4		N.I.S.	N.I.S.		N.I.S.	N.I.S.		N.I.S.	N.I.S.		N.I.S.	N.I.S.			
o Zone Volume, mil gal	4	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000			
o Flows Entering, mgd	4														
- Throughflow	4	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
- Plant Influent to this Zone	4	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- ML Recirculation	4	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- Total Flow to this Zone	4	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
o ML Flow removed from this Zone, mgd	4	140.17	00.20		000.10	00.20		140.10	02.00		101.02	100.20			
- ML Recirculated to Other Zones	1	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- ML Wasted from this Zone	7	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
Other ML Flow removed from this Zone	*	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
Net ML Flow to Next Zone, mgd	La	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
	4	140.17	03.23		309.10	00.20		140.13	62.93		101.02	130.20			
o HRT in this Zone - Hydraulic Detention time, Actual, hr	4	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
o Effluent from this Zone	4	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
	4	3,500	2,495		8,026	2,495		2.504	2,500		E E04	4 404			
MLSS, mg/L	4							3,501			5,501	4,494			
NH3-N, mg/L	4	7.92	9.26		2.72	8.30		7.68	9.18		7.35	9.35			
NO3-N, mg/L	4	0.81	0.04		5.26	0.01		2.00	0.34		0.11	0.02			
D.O., mg/L	4	0.00	0.00		0.50	0.00		0.00	0.00		0.00	0.00			
o Biological Growth Summary	4	_	_		_	_		_	_		_	_			
- Increase in VSS, lb/d	4	0	0		0	0		0	0		0	0			
- Increase in ISS, lb/d	4	0	0		0	0		0	0		0	0			
ACTIVATED SLUDGE - ZONE 5		Aerated	Aerated		N.I.S.	Aerated		Un-Aer	Un-Aer		Aerated	Aerated			
o Zone Volume, mil gal	5	2.781	1.571		0.000	1.571		2.023	1.571		1.517	1.571			
o Flows Entering, mgd	5														
- Throughflow	5	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
 Plant Influent to this Zone 	5	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
- ML Recirculation	5	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Total Flow to this Zone 	5	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
 ML Flow removed from this Zone, mgd 	5														
 ML Recirculated to Other Zones 	5	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 ML Wasted from this Zone 	5	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Other ML Flow removed from this Zone 	*	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.00			
 Net ML Flow to Next Zone, mgd 	5	148.17	83.25		309.16	80.26		148.15	82.95		101.62	130.26			
o HRT in this Zone	5														
 Hydraulic Detention time, Actual, hr 	5	0.45	0.45		0.00	0.47		0.33	0.45		0.36	0.29			
o Effluent from this Zone	5														
MLSS, mg/L	5	3,500	2,497		8,026	2,498		3,499	2,497		5,500	4,497			
NH3-N, mg/L	5	5.71	5.24		2.72	4.37		7.98	9.52		5.56	5.34			
NO3-N, mg/L	5	1.88	3.32		5.26	3.12		0.68	0.01		0.63	3.23			
D.O., mg/L	5	0.15	2.00		0.50	2.00		0.00	0.00		0.10	2.00			
o Biological Growth Summary	5				_										
 Increase in VSS, lb/d 	5	-548	1,283		0	1,960		-2,260	-2,440		-857	2,399			

CAROLLO ENGINEERS, PC

W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE

PROJECT: REGIONAL WATER QUALITY CONTROL PLANT - SUBJECT: PROCESS ANALYSIS AND MASS BALANCE

SUBJECT: Calc by 02/27/2008 1:50 PM Biotran05 v.1106 Design Capacity (Conv. ASP)-high SRT Design Capacity (MBR) Design Capacity (EPT) Design Capacity (Conv. IFAS)-high SRT Setup Basis Plant 1 Plant 2 Combined info Annual Average Plant Flow, mgd 32.0 20.0 52.0 32.0 20.0 52.0 32.0 20.0 52.0 22.0 30.0 52.0 Design (Max-Month) Flow, mgd 57.7 57.7 57.7 35.5 222 35.5 222 57.7 35.5 222 24 4 33.3 - Increase in ISS, lb/d 318 341 0 372 -130 -128 158 596 **ACTIVATED SLUDGE - ZONE 6** Aerated Aerated Aerated Aerated Aerated Aerated Aerated Aerated o Zone Volume, mil gal 1.571 1.280 1.571 2.023 1.571 2.781 1.517 1.571 o Flows Entering, mgd - Throughflow 148.17 83.25 309.16 80.26 148.15 82.95 101.62 130.26 - Plant Influent to this Zone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - Total Flow to this Zone 148.17 83.25 309.16 80.26 148.15 82.95 101.62 130.26 o ML Flow removed from this Zone, mgd - ML Recirculated to Other Zones 0.00 0.00 120.00 0.00 0.00 0.00 0.00 0.00 - ML Wasted from this Zone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - Other ML Flow removed from this Zone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - Net ML Flow to Next Zone, mgd 148.17 83.25 189.16 80.26 148.15 82.95 101.62 130.26 HRT in this Zone - Hydraulic Detention time, Actual, hr 0.45 0.10 0.33 0.45 0.36 0.29 0.45 0.47 Effluent from this Zone -- MLSS, mg/L 3,500 2.499 8,026 2,500 3,500 2.499 5,501 4,499 -- NH3-N, mg/L 1.71 2.00 0.94 1.50 2.91 4.17 1.44 2.08 -- NO3-N, mg/L 5.45 6.08 6.83 5.57 5.30 4.70 4.33 5.94 -- D.O., mg/L 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 o Biological Growth Summary 437 902 661 626 496 1.499 38 1,654 - Increase in VSS. lb/d - Increase in ISS, lb/d 417 295 482 248 302 272 270 522 ACTIVATED SLUDGE - ZONE 7 MBR Aerated Aerated Aerated Aerated Aerated Aerated Aerated o Zone Volume, mil gal 1.571 0.567 1.571 2.023 1.571 1.517 1.571 2.781 o Flows Entering, mgd - Throughflow 148.17 83.25 189.16 80.26 148.15 82.95 101.62 130.26 - (-) Removed as MBR Filtrate [Note] 7 -37.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 101.62 - Total Flow to this Zone 148.17 83.25 151.83 80.26 148.15 82.95 130.26 ML Flow removed from this Zone (excl.MBR Filtr) 75.00 - ML Recirculated to Other Zones 96.00 50.00 0.00 50.00 96.00 50.00 60.00 - ML Wasted from this Zone 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 - Other ML Flow removed from this Zone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - Net Flow to Next Zone, mgd 52.17 33.25 151.33 30.26 52.15 32.95 41.62 55.26 o HRT in this Zone - Hydraulic Detention time, Actual, hr 0.45 0.09 0.33 0.45 0.47 0.45 0.36 0.29 Effluent from this Zone -- MLSS, mg/L 3,500 2,500 10,000 2,500 3,500 2,500 5,500 4,500 -- NH3-N, mg/L 0.26 0.40 0.24 0.29 0.46 0.87 0.19 0.42 -- NO3-N, mg/L 6.72 7.39 7.37 6.57 7.51 7.72 5.41 7.24 -- D.O., mg/L 2.00 2.00 1.50 2.00 2.00 2.00 2.00 2.00 o Biological Growth Summary -620 439 90 86 96 411 -671 1,066 - Increase in VSS. lb/d - Increase in ISS. lb/d 317 249 254 194 281 181 211 472 WAS SOLIDS PRODUCTION o P-Removal - Include P-Removal in Calc? (Y=1, N=0) 0 0 0 0 0 0 0 0 o Solids Production, TSS, lb/d - TSS Entering in Feed, lb/d 35,193 25,785 35,882 22,988 21,534 15,894 23,794 47,222 - VSS Change in A.B. Zones 4,732 4,456 4,321 3,489 4,551 2,297 1,542 7,028 - ISS Change in A.B. Zones 1,944 1,581 1,151 1,572 1,008 1,014 629 941 - ISS due to Bio-P (Est.), lb/d 0 0 0 0 0 0 0 0 - Unbiodeg VSS due to Bio-P (Est.), lb/d 0 0 Λ 0 0

CARO	LLO	ΕN	IGIN	IEERS	PC

W.O./CLIENT: 7472A.00 / CITY OF RIVERSID

PROJECT: REGIONAL WATER QUALITY CONTROL PLANT - SUBJECT: PROCESS ANALYSIS AND MASS BALANCE

iotran05 v.1106														
	Design Capacity Plant 1		igh SRT ombined	Design C Plant 1	apacity (MBR) Plant 2 Co	ombined	Design C Plant 1	Capacity (EPT) Plant 2 Co	Dombined	esign Capacity Plant 1		nigh SRT ombined	Setup info	Basi
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd - Total Solids Production, lb/d	35.5 41,506	22.2 31,392	57.7	35.5 41,775	22.2 27,485	57.7	35.5 27,098	22.2 18,820	57.7	24.4 26,277	33.3 56,195	57.7		
ILSS CHARACTERISTICS														
Mixed Liquor Components, mg TSS/L														
- Solids, mg TSS/L	200	20		00	22		20	24		24	E4			
Slowly Biodegradable	26	28 996		86	23 977		28	21 838		34	51			
Active Biomass	1,261			3,526			1,238			1,723	1,661			
Endogenous Biomass	415 59	206 44		1,180 182	230 41		406 91	255 63		758 81	345 67			
Nitrifiers		44 881			41 887		91 1,185	63 947		81 2,020	1,686			
Unbiodegradable VSS (Influent + Bio-P)	1,196			3,443										
Inorganic SS (influent + Biogrowth)	550 0	384 0		1,585 0	383 0		557 0	410 0		897 0	732 0			
Inorganic SS due to Bio-P (est.) Total Last-Pass MLSS	3,506	2,539		10,002	2,542		3,506	2,535		5,514	4,541			
Total Cast-Pass MLSS Total Soluble Organic N (SolOrgN)	2.3	2,539		2.3	2,542		3,506	2,535		2.3	4,541			
Alkalinity, mg/L as CaCO3	141.2	139.2		2.3 138.6	2.3 142.2		2.3 139.0	139.7		2.3 145.8	139.8			
Org N fraction of MLVSS (NinVSS)	0.079	0.081		0.078	0.081		0.079	0.079		0.077	0.078			
MLVSS Fraction	0.079	0.081		0.078	0.081		0.079	0.079		0.077	0.078			
BOD of AS Solids	0.84	0.00		0.64	0.00		0.04	0.04		0.04	0.04			
- BOD/TSS ratio	0.28	0.31		0.28	0.30		0.28	0.26		0.24	0.29			
OLIDS RETENTION TIME. SRT														
Total Solids Wasted, lb/d	41,506	31,392		41,775	27,485		27,098	18,820		26,277	56,195			
- Recycled WAS Solids, lb/d	582	3,522		0	3,425		343	2,173		600	4,007			
- Net lb Solids Yield/day	40,924	27,870		41,775	24.060		26,755	16,646		25,677	52.188			
Total BOD Load, lb/d	51,881	32,785		53,012	30,663		36,373	23,054		35,065	55,303			
- Recycled BOD, lb/d	228	1,028		0	980		159	598		225	1,100			
- Net BOD Load, lb/d	51,653	31,757		53,012	29,684		36,214	22,456		34,841	54,203			
Solids Production														
- Ib Dry SS/lb BOD Applied	0.792	0.878		0.788	0.811		0.739	0.741		0.737	0.963			
Total Mass TSS in System, lb	324,711	163,609		349,539	163,644		236,149	163,723		278,358	294,577			
- Total SRT (Rs), days	7.93	5.87	7.24	8.37	6.80	7.87	8.83	9.84	9.24	10.84	5.64	8.17		
- lb/mgd	8,293	6,477		9,239	7,117		6,034	6,540		10,726	7,673			
Total Mass TSS in Aerated Zones, lb	243,533	98,205		218,609	98,225		118,074	65,491		208,756	176,793			
- Nominal Aerated Mass Fraction	0.750	0.600		0.625	0.600		0.500	0.400		0.750	0.600			
- Nominal Aerobic SRT, days	5.95	3.52		5.23	4.08		4.41	3.93		8.13	3.39			
Mass Fraction in Each Zone														
- Zone 1	0.125	0.186		0.187	0.186		0.125	0.186		0.125	0.186			
- Zone 2	0.125	0.214		0.187	0.214		0.125	0.214		0.125	0.214			
- Zone 3	0.000	0.000		0.245	0.000		0.000	0.000		0.000	0.000			
- Zone 4	0.000	0.000		0.000	0.000		0.000	0.000		0.000	0.000			
- Zone 5	0.250	0.200		0.000	0.200		0.250	0.200		0.250	0.200			
- Zone 6	0.250	0.200		0.245	0.200		0.250	0.200		0.250	0.200			
- Zone 7	0.250 1.000	0.200 1.000		0.135 1.000	0.200 1.000		0.250 1.000	0.200 1.000		0.250 1.000	0.200 1.000			
Min. Aer. SRT recommended for	1.000	1.000		1.000	1.000		1.000	1.000		1.000	1.000			
nitrification, days	5.5	4.4		5.0	4.4		4.7	5.4		5.8	4.4			
- Washout SRT(total)	3.5	7.7		5.0	7.7		7.7	5.4		5.0	7.7			
Rwashout = 1/(Ua*DOsw - ba)	3.16	3.20		3.56	3.20		4.28	6.52		3.37	3.20			
- Recommended Aerobic SRT	3.16	3.20		3.30	3.∠∪		4.20	0.52		3.31	3.∠∪			
	* 0.20	0.20		0.20	0.20		0.20	0.20		0.20	0.20			
Max slope criterion, dNH3/dSRT, mg/L-d		7.4		8.0			9.4	13.5			7.4			
Recomm. Min. Operating SRT(total)	7.3				7.4					7.7				
Recomm. Min. Operating SRT(Nominal aerobic)Nitrification Safety Factor	5.5 2.31	4.4 2.30		5.0	4.4		4.7	5.4		5.8	4.4			
) 21	230		2.26	2.30		2.19	2.06		2.28	2.30			1

CAROLLO ENGINEERS, PC															
W.O./CLIENT: 7472A.00 / CITY OF RIVI	ERSIDE														
PROJECT: REGIONAL WATER QUA		TROL PLANT -													
SUBJECT: PROCESS ANALYSIS AI															
Calc by Date Time	Chk by/Date														
CFP,NV 02/27/2008 1:50 PM		Ch07-AppA.xls													
liotran05 v.1106															
		Design Capacity	(Conv. ASP)-h	nigh SRT	Design (Capacity (MBR))	Design (Capacity (EPT) De	sign Capacity	(Conv. IFAS)-	high SRT	Setup	Basis
		Plant 1	Plant 2 C	ombined	Plant 1	Plant 2 C	ombined	Plant 1	Plant 2 C	Combined	Plant 1	Plant 2 C	ombined	info	
Annual Average Plant Flow, mgd		* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd		35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
AERATION REQUIREMENTS															
Oxygen Required, lb/d															
		0	0		0	0		0	0		0	0			
- Net Oxygen Demand in Zone 1		0	0		0	0		0	0		0	0			
- Net Oxygen Demand in Zone 2			0			0		0	-						
- Net Oxygen Demand in Zone 3		0	-		32,850			-	0		0	0			
- Net Oxygen Demand in Zone 4		0	0		0	0		0	0		0	0			
- Net Oxygen Demand in Zone 5		21,855	19,647		0	18,910		257	331		13,151	31,512			1
- Net Oxygen Demand in Zone 6		37,129	16,293		38,026	14,599		38,401	22,395		26,548	26,362			
- Net Oxygen Demand in Zone 7		21,810	11,582		12,182	9,948		22,983	15,185		14,952	19,338			
 (-) Oxygen provided by MBR Scouring 		0	0		-10,220	0		0	0		0	0			
 Total Oxygen required lb/d 		80,794	47,522		72,838	43,458		61,641	37,911		54,651	77,212			1
Diffuser Analysis		42,715	58,144					42,715	58,144		42,715	58,144			1
ote:															
All values of air and blower requirements															
given below are preliminary estimates,															
to be refined during detailed design															
Oxygen Transfer Efficiency		[EDI]	[EDI]		[EDI]	[EDI]		[EDI]	[EDI]		[EDI]	[EDI]			
- Diffuser Type		Mini-	Mini-		Mini-	Mini-		Mini-	Mini-		Mini-	Mini-			
2		Panel	Panel		Panel	Panel		Panel	Panel		Panel	Panel			
- Aeration Basin D.O. (Avg), mg/L		1.4	2.0		1.3	2.0		2.0	2.0		1.4	2.0			
- Design Water Temperature, C		29	29		29	29		29	29		29	29			Summer
- Diffuser submergence, ft		15.9	16.5		15.9	16.5		15.9	16.5		15.9	16.5			Cummer
- Air loading, scfm/unit	[Note]	1.25	1.25		1.25	1.25		1.25	1.25		1.25	1.25			
- All loading, scim/unit	[INOIG]	scfm/sf	scfm/sf		scfm/sf	scfm/sf		scfm/sf	scfm/sf		scfm/sf	scfm/sf			
- Floor Coverage		23.4	28.7		70.3	25.2		38.8	29.3		30.9	52.4			
- Floor Coverage		%Actv A	%Actv A			%Actv A			%Actv A						
- Clean Water SOTE		* 36.2	37.1		%Actv A	37.1		%Actv A 36.2	37.1		%Actv A 36.2	%Actv A 37.1			Mfr. lit.
		30.2	37.1		36.2	37.1		30.∠	37.1		30.2	37.1			IVIII. III.
- Site Conditions Adjustment Factor															
F = Actual / Standard OTE															
Alpha factor, including fouling		0.54	0.50		0.37	0.52		0.56	0.59		0.50	0.45			Estimate
Theta factor		* 1.024	1.024		1.024	1.024		1.024	1.024		1.024	1.024			Default
Temp. correction, Tau		0.85	0.85		0.85	0.85		0.85	0.85		0.85	0.85			
 Elevation above MSL, ft 		* 695	695		695	695		695	695		695	695			Site
Pressure correction, Omega		0.97	0.97		0.97	0.97		0.97	0.97		0.97	0.97			1
Beta factor		* 0.99	0.99		0.99	0.99		0.99	0.99		0.99	0.99			Default
Equilibrium C*20		10.64	10.70		10.64	10.70		10.64	10.70		10.64	10.70			
Depth Adjustment Factor		* 0.37	0.37		0.37	0.37		0.37	0.37		0.37	0.37			Default
 F = Alpha x [Theta ^(T-20)] 		0.46	0.39		0.32	0.41		0.43	0.46		0.43	0.35			
x (Tau Beta Omega C*20 - C)/C*20															
- Oxygen Transfer Efficiency		16.57	14.57		11.53	15.16		15.71	17.09		15.55	12.95			1
OTE = F x SOTE		Percent	Percent		Percent	Percent		Percent	Percent		Percent	Percent			
Preliminary Estimate		. 5.55.11			. 0.00			. 5.00.11			. 5.00.11				
Surface Aerators		#N/A	#N/A		#N/A	#N/A		#N/A	#N/A		#N/A	#N/A			
- Oxygen to be transferred, lb/hr		#1 N /A	1/1 1//-1		πι w/ r\	n/1 N/ /A		#1N//\	/F1 N/ /-1		π1N//1	TINE.			1
- Aerator hp required															
[Ox. Requ.d/Eff.]		*													
- Peaking factor															
- Aerator hp Installed															1
SOTR Required															
 Average Day @ Design flow 															
 Actual Ox Tr Requd, AOTR, lb/d 		80,794	47,522		72,838	43,458		61,641	37,911		54,651	77,212			1
 Site Conditions Adjustment, F 		0.46	0.39		0.32	0.41		0.43	0.46		0.43	0.35			
Standard Ox Tr Rate, SOTR, lb/d		176,639	121,066		228,813	106,388		142,119	82,336		127,308	221,242			
SOTR = AOTR / F															1

SOTR = AOTR / F

CAROLLO ENGINEERS PO

W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE

PROJECT: REGIONAL WATER QUALITY CONTROL PLANT - SUBJECT: PROCESS ANALYSIS AND MASS BALANCE

FP,NV 02/27/2008 1:50 PM	Ch07-AppA.xls													
otran05 v.1106									_					
	Design Capacity Plant 1	(Conv. ASP)-h Plant 2 Co		Design C Plant 1	apacity (MBR) Plant 2 C) ombined	Design (Plant 1	Capacity (EPT) Plant 2 C	De ombined	sign Capacity Plant 1	(Conv. IFAS)-h Plant 2 Co	nigh SRT ombined	Setup info	Basis
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
Air Supply Required														
- Average Day @ Design flow	80.794	47.522		70.000	43.458		04.044	37.911		54.054	77.212			
Ox Transfer Rate, AOTR, lb/d Oxygen Supplied, lb/min	338.6	47,522 226.5		72,838 438.6	43,458 199.1		61,641 272.4	37,911 154.1		54,651 244.0	414.0			
of Air/lb Oxygen	57.0	57.0		57.0	57.0		57.0	57.0		57.0	57.0			
[23.3 lb O2/100 lb Air]	37.0	37.0		37.0	37.0		37.0	37.0		37.0	57.0			
[0.0753 lb Air/scf]														
Process Air, scfm	19,300	12,910		25,000	11,350		15,530	8,780		13,910	23,600			
scfm per lb/d Oxygen	0.239	0.272		0.343	0.261		0.252	0.232		0.255	0.306			
scf/lb BOD Applied	536	567		679	533		615	548		571	615			
Other Uses, e.g. Channel Air	* 1,500	1,200		1,500	1,200		1,500	1,200		1,200	1,400			Default
Total Blower Air, scfm	20,800	14,110		26,500	12,550		17,030	9,980		15,110	25,000			
- Peak Day @ Design Flow														
Peaking factor	* 1.3	1.3		1.3	1.3		1.3	1.3		1.3	1.3			Default
Process Air, scfm	25,100	16,800		32,500	14,800		20,200	11,400		18,100	30,700			
Total Blower Air, scfm	26,600	18,000		34,000	16,000		21,700	12,600		19,300	32,100			
Diffusers		_												
- Expressed as active sq ft or # diffusers	sq ft	sq ft		sq ft	sq ft		sq ft	sq ft		sq ft	sq ft			
- Recommended				4.05	4.05		4.05	4.05		4.05	4.05			
Air Loading, scfm/(sf or dfr)	1.25	1.25		1.25	1.25		1.25	1.25		1.25	1.25			
Number recommended per Basin	1,403	1,722		4,000	1,513		1,553	1,171		1,854	3,146			
- Actual Installed, per basin	* 4.400	4 700		4.000	4.540		4.550	4 474		4.054	2.440			
Main Basin Additional Basin	* 1,403 * 0	1,722 0		4,000 0	1,513 0		1,553 0	1,171 0		1,854 0	3,146 0			
- Total Installed, sf or dfr	15,438	10,330		19,998	9,078		12,421	7,025		11,126	18,878			
- Air Loading, scfm/sf or dfr	13,430	10,550		19,990	9,076		12,421	7,025		11,120	10,070			
Daily Average	1.25	1.25		1.25	1.25		1.25	1.25		1.25	1.25			
- Floor Coverage	1.20	1.20		1.20	1.20		1.20	1.20		1.20	1.20			
Total Basin Floor Area in Service, sf	88,000	60,000		51,700	60,000		64,000	60,000		48,000	60,000			
Total Aerated Floor Area in service	66,000	36,000		28,427	36,000		32,000	24,000		36,000	36,000			
Coverage	23.4	28.7		70.3	25.2		38.8	29.3		30.9	52.4			
Expressed as	%Actv A	%Actv A		%Actv A	%Actv A		%Actv A	%Actv A		%Actv A	%Actv A			
- Active sf/diffuser, or 1	2.54	2.54		2.54	2.54		2.54	2.54		2.54	2.54			
- Number of diffuser units	6,078	4,067		7,873	3,574		4,890	2,766		4,380	7,432			
Blower Discharge pressure														
- Head, ft water														
Submergence	15.9	16.5		15.9	16.5		15.9	16.5		15.9	16.5			
Freeboard above normal op level	0.0	0.0		4.0	0.0		0.0	0.0		0.0	0.0			
Diffuser head loss	1.5	1.5		1.5	1.5		1.5	1.5		1.5	1.5			
Pipe & Valve friction	2.5	2.5		2.5	2.5		2.5	2.5		2.5	2.5			
Total Head, ft	19.9	20.5		23.9	20.5		19.9	20.5		19.9	20.5			
- Discharge pressure, psig	8.6	8.9		10.4	8.9		8.6	8.9		8.6	8.9			
Delivered Horsepower - Max Operating Air Temp, C	* 34	34		34	34		34	34		34	34			Default
Barometric Pressure, psia	14.3	14.3		14.3	14.3		14.3	14.3		14.3	14.3			Delault
- Blower Suction Pressure, psia	14.0	14.0		14.0	14.0		14.0	14.0		14.0	14.0			
- Daily Average Total Air, scfm	20,800	14,110		26,500	12,550		17,030	9,980		15,110	25,000			
- Avg Delivered Horsepower, hp	738	513		1,091	456		604	363		536	909			
- Peak Day Delivered hp	944	655		1,400	582		770	458		685	1,167			
Wire power required				.,							,			
- Energy Efficiency, %	* 61.0	61.0		61.0	61.0		61.0	61.0		61.0	61.0			Default
- Wire power required, hp														
Daily Average	1,210	840		1,790	750		990	590		880	1,490			
Firm Installed	1,550	1,070		2,290	950		1,260	750		1,120	1,910			

CAROLLO ENGINEERS, PC
W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE

PROJECT: REGIONAL WATER QUALITY CONTROL PLANT -

* 32.0 35.5 ** 39.15 39.15 13.01 52.17 13.36 38.80	20.0 22.2 25.26 25.26 7.99 33.25	gh SRT mbined 52.0 57.7	32.0 35.5 37.83 37.33	20.0 22.2 22.99	52.0 57.7	Design (Plant 1 32.0 35.5	Capacity (EPT) Plant 2 C		gn Capacity Plant 1 22.0 24.4	(Conv. IFAS) Plant 2 (30.0 33.3	-high SRT Combined 52.0 57.7	Setup info	Basis
Design Capacity Plant 1 * 32.0 35.5 39.15 39.15 13.01 52.17 13.36	20.0 22.2 25.26 25.26 7.99 33.25	mbined 52.0	32.0 35.5 37.83 37.33	20.0 22.2	sombined 52.0	Plant 1 32.0	Plant 2 C	ombined P	Plant 1 22.0	Plant 2 (Combined 52.0	•	Basis
* 32.0 35.5 39.15 39.15 13.01 52.17 13.36	20.0 22.2 25.26 25.26 7.99 33.25	mbined 52.0	32.0 35.5 37.83 37.33	20.0 22.2	sombined 52.0	Plant 1 32.0	Plant 2 C	ombined P	Plant 1 22.0	Plant 2 (Combined 52.0	•	Basis
* 32.0 35.5 39.15 39.15 13.01 52.17 13.36	20.0 22.2 25.26 25.26 7.99 33.25	mbined 52.0	32.0 35.5 37.83 37.33	20.0 22.2	sombined 52.0	Plant 1 32.0	Plant 2 C	ombined P	Plant 1 22.0	Plant 2 (Combined 52.0	•	
39.15 39.15 39.15 13.01 52.17 13.36	25.26 25.26 7.99 33.25		35.5 37.83 37.33	22.2									
39.15 39.15 39.15 13.01 52.17 13.36	25.26 25.26 7.99 33.25		35.5 37.83 37.33	22.2									
39.15 39.15 39.15 13.01 52.17 13.36	25.26 25.26 7.99 33.25		35.5 37.83 37.33	22.2									<u> </u>
39.15 39.15 13.01 52.17 13.36	25.26 25.26 7.99 33.25	57.7	37.83 37.33	22.99	57.7	35.5	22.2	57.7	24.4	33.3	57.7		1
39.15 13.01 52.17 13.36	25.26 7.99 33.25		37.33										
39.15 13.01 52.17 13.36	25.26 7.99 33.25		37.33										
39.15 13.01 52.17 13.36	25.26 7.99 33.25		37.33										
39.15 13.01 52.17 13.36	25.26 7.99 33.25		37.33										
13.01 52.17 13.36	7.99 33.25					39.14	25.03		25.95	38.39			
52.17 13.36	33.25			22.99		39.14	25.03		25.95	38.39			
13.36			151.33	7.27		13.01	7.91		15.66	16.87			
13.36													
			188.66	30.26		52.15	32.95		41.62	55.26			
38.80	8.35		151.33	7.59		13.23	8.13		15.87	17.33			
	24.89		37.33	22.67		38.92	24.82		25.74	37.93			
*													
* 7			8			7	2		4				
* 6			7				2		4		ydraulics		
* 0			0							130			
104,720	185,825		104,720	185,825		104,720	185,825		104,720	185,825			
*													
							_						
_							_						
158,336	80,503		158,336	80,503		158,336	80,503		158,336	80,503			
11.90	12.61		11.90	12.61		11.90	12.61		11.90	12.94			
F2 000	00 F40		64 600	OC E40		FO 000	OC E40		25 200	20,020			
/35	589		606	537		131	587		131	683			
	15 700		0	15 700		0	15 700		0	1F 700			
	209		U	551		U	301		U	003			
20	16		255	15		20	16		5.4	27			
	10		U	ເວ		U	10		U	31			
4 70	2 78		5 48	2 78		4 70	2 78		3 13	4 17			
0.00	1.20		0.00	1.20		0.00	1.20		5.00	1.20			
20	42		NΑ	4.6		20	42		20	3.6			
IN.A.	5.1		IN.A.	5.4		IN.A.	5.1		· V. / .	2.1			
1													
* 808	745		667	745		811	745		804	745			Default
													Dorauli
0,000	10,502		0,000	3,300		0,000	10,712		0,000	12,179			
* 0	556		0	556		0	556		Λ	556			Default
•													Doiauli
	0,020		U	1,513		U	0,231		3	3,043			
	* 6	* 6 2 * 0 130 * 11.9 14.0 8,800 13,273 104,720 185,825 * 0 2 * 120 100 * 14.0 10.3 11,310 7,854 158,336 80,503 * 1.00 0.63 * 1.00 0.63 * 1.00 0.63 * 1.00 12.61 52,800 26,546 735 589 0 15,708 0 589 29 16 0 16 4.70 2.78 0.00 1.20 2.9 4.2 N.A. 3.1 * 808 745 8,000 10,502 * 0 556	* 6 2 * 0 130 * 11.9 14.0 8,800 13,273 104,720 185,825 * 0 2 * 0 2 * 120 100 * 14.0 10.3 11,310 7,854 158,336 80,503 * 1.00 0.63 * 1.00 0.63 * 1.00 0.63 * 1.00 12.61	* 0 130 0 0 11.9 11.9 14.0 11.9 8.800 13.273 8.800 104.720 185.825 104.720 * 0 2 0 0 2 0 0 120 120 120 120 120 120 1	* 6 2 7 2 7 2 * 0 130 0 130 * 11.9 14.0 11.9 14.0 8,800 13,273 8,800 13,273 104,720 185,825 104,720 185,825 * 0 2 0 2 * 0 2 0 2 * 120 100 120 100 * 14.0 10.3 14.0 10.3 11,310 7,854 11,310 7,854 158,336 80,503 158,336 80,503 * 1.00 0.63 1.00 0.63 * 1.00 0.63 1.00 0.63 * 1.00 0.63 1.00 0.63 * 1.00 0.63 1.00 0.63 * 1.00 589 606 537 0 15,708 0 15,708 0 589 0 537 29 16 255 15 0 16 0 15 4.70 2.78 5.48 2.78 0.00 1.20 2.9 4.2 N.A. 4.6 N.A. 3.1 N.A. 3.4 * 808 745 8,000 10,502 8,000 9,566 * 0 556	* 6 2 7 7 2 * 0 130 0 130 * 11.9 14.0 11.9 14.0 8,800 13,273 8,800 13,273 104,720 185,825 104,720 185,825 * 0 2 0 2 * 0 2 0 2 * 120 100 120 100 * 14.0 10.3 14.0 10.3 11,310 7,854 11,310 7,854 158,336 80,503 158,336 80,503 * 1.00 0.63 1.00 0.63 * 1.00 0.63 1.00 0.63 11.90 12.61 11.90 12.61 52,800 26,546 61,600 26,546 735 589 606 537 0 15,708 0 15,708 0 589 0 537 29 16 255 15 0 16 0 15 4.70 2.78 5.48 2.78 0.00 1.20 0.00 1.20 2.9 4.2 N.A. 4.6 N.A. 3.1 N.A. 3.4 * 808 745 8,000 9,566 * 0 556 0 556	* 6 2 7 7 2 6 6 7 7 130 0 130 0 130 0 0 130 0 0 130 0 0 130 0 0 0	* 6 2 7 7 2 6 2 2 7 130 130 0 130 0 130 0 130 130 14.0 11.9 14.0 11.9 14.0 11.9 14.0 11.9 14.0 11.9 14.0 11.9 14.0 11.9 14.0 13.0 13.273 8,800 13.273 8,800 13.273 8,800 13.273 104,720 185,825 104,720 100 120 120 120 120 120 120 120 120 1	* 6 2 7 2 6 2 * 0 130 0 130 0 130 0 130 * 11.9 14.0 11.9 14.0 11.9 14.0 8.800 13.273 8.800 13.273 8.800 13.273 104,720 185,825 104,720 185,825 104,720 185,825 * 0 2 0 2 0 2 0 2 * 120 100 120 100 120 100 120 100 * 14.0 10.3 14.0 10.3 14.0 10.3 11,310 7,854 11,310 7,854 11,310 7,854 158,336 80,503 * 1.00 0.63 1.00 0.63 1.00 0.63 * 1.00 0.63 1.00 0.63 1.00 0.63 * 11.90 12.61 11.90 12.61 11.90 12.61 * 52,800 26,546 61,600 26,546 52,800 26,546 735 589 606 537 737 587 0 15,708 0 15,708 0 15,708 0 587 29 16 255 15 29 16 0 16 0 15 0 16 4.70 2.78 5.48 2.78 4.70 2.78 0.00 1.20 0.00 1.20 0.00 1.20 2.9 4.2 N.A. 4.6 2.9 4.2 N.A. 3.1 N.A. 3.4 N.A. 3.1	• 6 2 7 2 6 2 4 4 • 0 130 0 130 0 130 0 130 0 0 • 11.9 14.0 11.9 14.0 11.9 14.0 11.9 • 8,800 13,273 8,800 13,273 8,800 13,273 8,800 104,720 185,825 104,720 185,825 104,720 185,825 104,720 • 0 2 0 2 0 2 0 2 0 2 0 2 • 120 100 120 100 120 100 120 100 120 • 14.0 10.3 14.0 10.3 14.0 10.3 14.0 10.3 14.0 15,836 80,503 158,336	* 6 2 7 2 6 2 4 3 1	* 6 2 7 2 6 2 4 3 hydraulics * 0 130 0 130 0 130 0 130 0 130 0 130 * 11.9 14.0 11.9 14.0 11.9 14.0 11.9 14.0 11.9 14.0 8,800 13,273 8,800 13,273 8,800 13,273 8,800 13,273 104,720 185,825 104,720 185,825 104,720 185,825 104,720 185,825 * 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	* 6 2 7 2 6 2 4 3 hydraulics * 0 130 0 130 0 130 0 130 0 130 * 11.9 14.0 11.9 12.0 10.0 12.0 11.3 14.0 10.

7472A.00 / CITY OF RIVERSIDE
REGIONAL WATER QUALITY CONTROL PLANT PROCESS ANALYSIS AND MASS BALANCE PROJECT: SUBJECT:

Calc by Date Time Chk by/Date CFP,NV 02/27/2008 1:50 PM	FileName: Ch07-AppA.xls													
Biotran05 v.1106	Опот грргила													
	Design Capacity				Capacity (MBR			Capacity (EPT		Design Capacity			Setup	Basis
	Plant 1	Plant 2	Combined	Plant 1	Plant 2 C	Combined	Plant 1	Plant 2 C	Combined	Plant 1	Plant 2 C	combined	info	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
- Design Max. SVI, ml/g	* 150	150		150	150		150	150		150	150			Default
$ISV = a \times exp(-b MLSS)$, ft/h														
- "a" Value, ft/hr	* 21.3	21.3		21.3	21.3		21.3	21.3		21.3	21.3			
- "b" Value [x 1,000,000]	* 218	218		218	218		218	218		218	218			
o Target Settling Values														
 Effluent rise rate (SOR), ft/hr Group 1 	4.09	3.28		3.38	2.99		4.11	3.27		4.07	3.81			
Group 1	N.A.	3.28		N.A.	2.99		N.A.	3.27		N.A.	3.81			
Average	4.09	3.28		3.38	2.99		4.11	3.27		4.07	3.81			
- Clarifier Safety Factor, CSF	* 2.3	2.3		2.3	2.3		2.3	2.3		2.3	2.3			Default
- Initial Settling Velocity, ISV, ft/hr	9.3	7.5		7.7	6.8		9.4	7.5		9.3	8.7			Dolaali
- Preferred Max. Last-Pass MLSS, mg/L	3,786	4,801		4,671	5,229		3,773	4,814		3,809	4,121			
o Selected Settling Values														
 Operating L-P MLSS conc, mg/L 	3,500	2,500		10,000	2,500		3,500	2,500		5,500	4,500			
- Operating ISV, ft/h	9.9	12.4		2.4	12.4		9.9	12.4		6.4	8.0			
- Operating CSF														
Group 1	2.4	3.0		0.7	3.3		2.4	3.1		1.6	2.1			
Group 2	N.A.	3.0		N.A.	3.3		N.A.	3.1		N.A.	2.1			
MEMBRANE BIO-REACTOR (MBR)														
o MBR System in Service? (Y=1; N=0)	* 0	0		1	0		0	0		0	0			
into column B) but DO NOT DELETE the section														
o Flow Rates, mgd														
- Nominal Plant Flow Rate, mgd	05.50	00.00		05.50	00.00		05.50	00.00		04.40	20.00			
Daily Average	35.52	22.20 28.86		35.52	22.20		35.52	22.20 28.86		24.42	33.30 43.29			
4-Hour Diurnal Peak Flow, mgd Max Instantaneous Flow, mgd	46.18 70.40	28.86 44.00		46.18	28.86 44.00		46.18 70.40	28.86 44.00		31.75 48.40	43.29 66.00			
Actual Secondary Effluent, mgd	70.40	44.00		70.40	44.00		70.40	44.00		40.40	66.00			
Daily Average	38.80	24.89		37.33	22.67		38.92	24.82		25.74	37.93			
4-Hour Diurnal Peak Flow, mgd	49.46	31.55		47.99	29.33		49.57	31.48		33.07	47.92			
Max Instantaneous Flow, mgd	73.68	46.69		72.21	44.47		73.80	46.62		49.72	70.63			
- Design Flow through Membranes														
Daily Average	38.80	24.89		37.33	22.67		38.92	24.82		25.74	37.93			
Peak Flow (Short Term)	* 49.46	31.55		47.99	29.33		49.57	31.48		33.07	47.92			
o Reaction Zone dimensions														
- (NOT INCLUDING the membrane zones)				_				_						
- No. of Units (parallel trains)	* 2	2 2		5	2		2	2 2		2	2 2			
Number of Units in Service Length, ft (inside)	* 2 * 200	200		5 200	2 200		200	200		2 200	200			
- Width, ft (inside)	* 100	100		40	100		100	100		100	100			
- Side Water Depth, ft	* 17	17		16.9	17		17	17		17	17			
Volume per Basin, mil gal	2.54	2.54		1.01	2.54		2.54	2.54		2.54	2.54			
o Membrane System Characteristics														
- Membrane identification	ZW-500b	ZW-500b		ZW-500d	ZW-500b		ZW-500b	ZW-500b		ZW-500b	ZW-500b			
 Average Operating Flux, gfd 	* 14	14		15.44	14		14	14		14	14			
 Stressed Operating Flux (4 hours), gfd 	* 18.2	18.2		27.35	18.2		18.2	18.2		18.2	18.2			
 Membrane area per module (element), sf 	* 650	650		340	650		650	650		650	650			
- Modules (Elements) per Cassette	* 8	8		48	8		8	8		8	8			
- Cassette dimensions, ft		_			•		_	_		_	6			
Length	* 6	6		7.1	6		6	6		6	6			
Width	* 2.39 * 6.73	2.39 6.73		5.7 8.3	2.39 6.73		2.39 6.73	2.39 6.73		2.39 6.73	2.39 6.73			1
Depth (Height) Scrubbing air, acfm per sf membrane	* 0.0192	0.0192		0.0128	0.0192		0.0192	0.0192		0.0192	0.0192			
acfm per module	12.48	12.48		4.35	12.48		12.48	12.48		12.48	12.48			
I admir per module	12.40	12.40		4.55	12.40		12.40	12.40		12.40	12.40			ı

CAROLLO ENGINEERS, PC													
W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE													
PROJECT: REGIONAL WATER QUALITY COI	NTROL PLANT -												
SUBJECT: PROCESS ANALYSIS AND MASS													
Calc by Date Time Chk by/Date													
CFP,NV 02/27/2008 1:50 PM	Ch07-AppA.xls												
Biotran05 v.1106													
		y (Conv. ASP)-hig		n Capacity (ME			Capacity (EPT		Design Capacit			Setup	Basis
	Plant 1	Plant 2 Cor	mbined Plant 1	Plant 2	Combined	Plant 1	Plant 2	Combined	Plant 1	Plant 2 (Combined	info	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0 32.	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7 35.		57.7	35.5	22.2	57.7	24.4	33.3	57.7		
- · · · · · · · · · · · · · · · · · · ·					<u> </u>			<u> </u>			<u> </u>		
Percent of time that air is ON	* 100	100	2			100	100		100	100			
Net scfm per module	14.7	14.7	1.3	3 14.7		14.7	14.7		14.7	14.7			
o Est.Membrane Units Required (In Service) - Membrane Area, sf													
- Membrane Area, si Based on Avg Flux	2,771,653	1,777,953	2,072,19	7 1,619,488		2,779,845	1,772,894		1,838,726	2.709.590			
Based on Max Flux	2,717,536	1,7733,590	1,754,58			2,779,645	1,772,694		1,816,932	2,709,390			
Membrane area in service, sf	2,771,653	1,777,953	2,072,19			2,779,845	1,772,894		1,838,726	2,709,590			
Number of Modules (Elements)	4,264	2,735	6,09			4,277	2,728		2,829	4,169			
Number of Modules (Elements) Number of Cassettes in service (typ.)	533	342	12			535	341		354	522			
o Membrane Zone Configuration		J.2	12	312		300	071		304	J			
- Total Number of Membrane Zones	* 2	2		3 2		2	2		2	2			
- Cassettes Required per Zone													
All units in service	267	171	10	5 156		268	171		177	261			
Allowing for one unit out of service	534	342	1	312		536	342		354	522			
- Cassettes Installed per Zone	* 534	342	1	312		536	342		354	522			
 Cassettes spaces provided, incl. Spares 	* 534	342	2:		Per Zenon	536	342		354	522			
 Total Membrane Area, all Zones, sf 	5,553,600	3,556,800	2,387,38	3,244,800		5,574,400	3,556,800		3,681,600	5,428,800			
 Flux @ Daily Avg Flow, gfd 													
One Zone OOS	14.0	14.0	17.9			14.0	14.0		14.0	14.0			
All Zones in Service	7.0	7.0	15.0	5 7.0		7.0	7.0		7.0	7.0			
- Flux @ Peak Flow, gfd													
One Zone OOS	17.8	17.7	23.0			17.8	17.7		18.0	17.7			
All Zones in Service	8.9	8.9	20.	1 9.0		8.9	8.9		9.0	8.8			
Freeboard Check (from FB Check section below) At Peak Flow (AB or MZ OOS)	ОК	ОК	OI	K OK		OK	OK		ОК	OK			
1 AB and 1 MZ OOS	OK	OK	OI			OK	OK OK		OK	OK OK			
At Inst. Max Flow (AB or MZ OOS)	Overload	Overload	Overloa			Overload	Overload		Overload	Overload			
1 AB and 1 MZ OOS	Overload	Overload	Overloa			Overload	Overload		Overload	Overload			
o Membrane Zone Dimensions - per Zone	0.1011044	OTOLICAG	010.100			Overload	01011044		0.0	Overload			
Number of cassettes accommodated	534	342	2:	2 312		536	342		354	522			
- Dimensions Along Length of Cassette:													
Zone inside dimension, ft	* 134.4	109.2	19.	100.8		134.4	109.2		109.2	134.4			
Number of Cassette positions	* 17	13		2 12		17	13		13	17			
Free space provided [30-50	32%	40%	37%	6 40%		32%	40%		40%	32%			
- Dimensions Along Width of Cassette:													
Zone inside dimension, ft	* 107.072	90.342	7:			107.072	90.342		93.688	103.726			
Number of Cassette positions	* 32	27	1			32	27		28	31			
Free space provided [30-50		40%	209			40%	40%		40%	40%			
- Total Cassette Spaces per Membrane Zone	544	351	2:			544	351		364	527			
Side Water Depth at min. flow, ft Minimum cassette water cover	* 8.7 * 1	8.7 1	11.3			8.7 1	8.7 1		8.7	8.7			
Minimum cassette water cover Cassette submergence	7.73	7.73	9.:			7.73	7.73		7.73	7.73			
Cassette submergence Free depth below cassettes, ft	7.73	7.73	9			7.73	1.73		7.73	7.73			
o Net Biological Reaction Volume	'	į.	۷.۱	<i>,</i> 1					'	,			
- Cassette volume per Zone, cf	59,193	37,910	6,88	2 34,585		59,415	37,910		39,240	57,863			
Total membrane zone volume, mil gal	1.88	1.29	1.0			1.88	1.29		1.34	1.82			
Total volume occupied by cassettes, mil gal	0.89	0.57	0.4			0.89	0.57		0.59	0.87			
Nominal Aer. Basin volume, mil gal	11.12	7.85	5.6			8.09	7.85		6.07	7.85			
- Available Biological Reaction Volume	10.24	7.29	6.3			7.20	7.29		5.48	6.99			
o MLSS Relationships													
- Target MLSS in Membrane Zone, mg/L	3,500	2,500	10,000	2,500		3,500	2,500		5,500	4,500			
- Target MLSS in Reaction Zones, mg/L	7,000	7,000	8,00			7,000	7,000		7,000	7,000			
 Total Recycle Ratio required leaving Zone 7 	0.29	0.29	4.0			0.29	0.29		0.29	0.29			
MLR from Zone 7 (only if from Z7)	2.45	1.98	0.0	2.17		2.45	2.00		2.31	1.95			

CAROLLO ENGINEERS, PO

W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE

PROJECT: REGIONAL WATER QUALITY CONTROL PLANT - SUBJECT: PROCESS ANALYSIS AND MASS BALANCE

Calc by Date Time Chk by/Date FileName:

02/27/2008 1:50 PM Biotran05 v.1106 Design Capacity (Conv. ASP)-high SRT Design Capacity (MBR) Design Capacity (EPT) Design Capacity (Conv. IFAS)-high SRT Setup Basis Plant 1 Plant 2 Combined info Annual Average Plant Flow, mgd 32.0 20.0 52.0 32.0 20.0 52.0 32.0 20.0 52.0 22.0 30.0 52.0 Design (Max-Month) Flow, mgd 35.5 57.7 57.7 35.5 222 57.7 35.5 222 57.7 222 24 4 33.3 -- Qr/Q 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00 - Actual MLSS in Zone 6, mg/L 3,500 2,499 8,026 2,500 3,500 2,499 5,501 4,499 Freeboard Check (Uses Main AB only) - Number of Basins that provide Freeboard 12 6 5 6 8 6 6 6 - Basin surface area, each, sf 8,000 10,000 8,000 10,000 8,000 10,000 8,000 10,000 - Total Freeboard provided, ft 6 6 -- Min. liquid clearance below top of wall -- Freeboard used for control -- Freeboard available for accumulation 4 4 - Freeboard volume available, mil gal -- All Aeration Basins in service 2.872 1.795 1.197 1.795 1.915 1.795 1.436 1.795 -- One Aeration Basin OOS 2.633 1.496 0.957 1.676 1.496 1 496 1.197 1 496 - Membrane capacity at peak flux, mgd 59.06 -- All membranes in Service 101.08 64.73 65.29 101.45 64.73 67.01 98.80 -- One cassette in cleaning 100.98 64.64 64.85 58.96 101.36 64.64 66.91 98.71 -- One Membrane Zone OOS 32.37 57.13 29.53 50.73 32.37 50.54 33.50 49.40 o Peak Accumulation at Diurnal Peak Flow - Peak Influent Flow, mad 47.99 49.57 31.48 33.07 47.92 49.46 31.55 29.33 - Peak Flow duration, h - All membranes in Service, Accum. mil gal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -- & All Aeration Basins in service .. Freeboard used, ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . Excess flow to be diverted, gal/d 0 0 -- & One Aeration Basin OOS 0.00 .. Freeboard used, ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . Excess flow to be diverted, gal/d - One cassette in cleaning, Accum, mil gal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -- & All Aeration Basins in service .. Freeboard used, ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . Excess flow to be diverted, gal/d 0 0 -- & One Aeration Basin OOS .. Freeboard used, ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . Excess flow to be diverted, gal/d - One Membrane Zone OOS, Accum. mil gal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -- & All Aeration Basins in service Freeboard used, ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . Excess flow to be diverted, gal/d 0 0 -- & One Aeration Basin OOS .. Freeboard used, ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .. Excess flow to be diverted, gal/d 0 0 0 o Peak Accumulation at Max Instantaneous Flow - Peak Influent Flow, mgd 73.68 46.69 72.21 44.47 73.80 46.62 49.72 70.63 - Peak Flow duration, h - All membranes in Service, Accum. mil gal 0.000 0.000 1.153 0.000 0.000 0.000 0.000 0.000 -- & All Aeration Basins in service . Freeboard used, ft 0.00 0.00 3.85 0.00 0.00 0.00 0.00 0.00

0.00

0.000

0.00

4.00

195,443

1.227

4.00

30,474

0

0.00

0.000

0.00

0.00

0.000

0.00

. Excess flow to be diverted, gal/d

. Excess flow to be diverted, gal/d

.. Excess flow to be diverted, gal/d

- One cassette in cleaning, Accum. mil gal

-- & All Aeration Basins in service .. Freeboard used, ft

-- & One Aeration Basin OOS

Freeboard used, ft

0

0.00

0.000

0.00

0.00

0.000

0.00

0

0.00

0.000

0.00

0

0.00

0.000

0.00

CAROLLO ENGINEERS, PC

W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE

PROJECT: REGIONAL WATER QUALITY CONTROL PLANT - SUBJECT: PROCESS ANALYSIS AND MASS BALANCE

SUBJECT: PROCESS ANALYSIS AND MAS													
Calc by Date Time Chk by/Da CFP,NV 02/27/2008 1:50 PM	ite FileName:												
Biotran05 v.1106	Cnu7-AppA.xis												1
Biotranus V.1106	Design Canacity	/ (Conv. ASP)-high	SRT Design	Capacity (MBR)		Design	Capacity (EPT) Desi	ian Canacity	(Conv. IFAS	high SRT	Setup	Basis
	Plant 1		bined Plant 1		ombined	Plant 1			Plant 1	Plant 2		info	Dasis
	T Idill 1	TIAIR 2 COIII	billed Flant I	riant 2 Oc	Jilibilieu	i idiit i	riant 2	ombined i	iant i	I Idill 2	Combined	IIIIO	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0 32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7 35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
& One Aeration Basin OOS													
Freeboard used, ft	0.00	0.00	4.00	0.00		0.00	0.00		0.00	0.00			
Excess flow to be diverted, gal/d	0	0	269.834	0		0	0		0	0			
- One Membrane Zone OOS, Accum. mil gal	3.858	2.387	2.513	2.491		3.845	2.376		2.703	3.539			
& All Aeration Basins in service													
Freeboard used, ft	4.00	4.00	4.00	4.00		4.00	4.00		4.00	4.00			
Excess flow to be diverted, gal/d	985,244	592,210	1,316,371	695,658		1,930,252	580,406		1,267,106	1,743,497			
& One Aeration Basin OOS													
Freeboard used, ft	4.00	4.00	4.00	4.00		4.00	4.00		4.00	4.00			
Excess flow to be diverted, gal/d	1,224,604	891,410	1,555,731	994,858		2,169,612	879,606		1,506,466	2,042,697			
Scrubbing Air Requirements Applied air per module, scfm	14.7	14.7	1.3	14.7		14.7	14.7		14.7	14.7			
- Applied air per module, scrm Sufficient for Oxygen Demand? (>)	14.7	14.7	1.3 More Ox regd	14.7		14.7	14.7		14.7	14.7			
Number of modules - all Zones in serv	8,544	5,472	7,022	4,992		8,576	5,472		5,664	8,352			
- Air supply - all Zones in service, scfm	125,986	80,688	9,373	73,610		126,458	80,688		83,519	123,155			
- Air supply - one Zone OOS, scfm	62,993	40,344	8,202	36,805		63,229	40,344		41,760	61,578			
o Oxygen Transfer Efficiency (Coarse Bubble)	3=,777	,	-,	,		,	,		,	- 1,- 1			
- Diffuser submergence, ft	7.7	7.7	9.3	7.7		7.7	7.7		7.7	7.7			
- Clean Water SOTE, est.	6.3	6.3	7.6	6.3		6.3	6.3		6.3	6.3			
- Equilibrium C*20	9.69	9.69	9.82	9.69		9.69	9.69		9.69	9.69			
Adjusted C*20	7.91	7.91	8.01	7.91		7.91	7.91		7.91	7.91			
- OTE Multiplier	0.112	0.116	0.087	0.116		0.112	0.116		0.104	0.108			
- Minimum DO required, mg/L	* 2.00	2.00	1.50	2.00		2.00	2.00		2.00	2.00			
- Membrane Zone D.O., mg/L	6.93	7.13	1.50	7.17		6.88	6.89		6.82	6.99 0.10			
- Site Conditions Adjustment Factor, F = OTEMult x (C*20adj - C)	0.11	0.09	0.57	0.09		0.11	0.12		0.11	0.10			
- Est. Oxygen Transfer Efficiency, %	0.69	0.57	4.32	0.54		0.72	0.75		0.71	0.62			
o D.O. Concentration without Air Supplement	0.03	0.57	7.02	0.54		0.72	0.75		0.71	0.02			
Ox.Transfer=Biological Demand, lb/d	21,810	11,582	12,182	9,948		22,983	15,185		14,952	19,338			
- Resulting DO conc, mg/L	6.93	7.13	0.25	7.17		6.88	6.89		6.82	6.99			
(All Zones in service)			More Ox rqd!										
o Supplemental Oxygen required													
 Max. (Biological) Ox. Demand, lb/d 	21,810	11,582	12,182	9,948		22,983	15,185		14,952	19,338			
 Ox.Transferred from Mem. air, lb/d 	21,814	11,584	10,220	9,950		22,987	15,188		14,955	19,342			
- Supplemental Ox requd in Membr zone, lb/d	0	0	1,962	0		0	0		0	0			
o Aeration Diffusers in Membrane Zones	00.704	40 704	44 700	47.500		00.704	40 704		00.404	07.000			
- Total Floor Area in Membrane Zones, sf	28,781	19,731	11,700	17,538		28,781	19,731		20,461	27,882			
Floor Area reserved for Cassettes Available Free Floor Area, sf	15,602 13,179	10,067 9,664	7,123 4,577	8,948 8,590		15,602 13,179	10,067 9,664		10,440 10,022	15,114 12,767			
Total MZ Floor Area fitted with Diffusers, sf	* 0	9,004	4,577	0,590		13,179	9,004		0,022	0			
o Scrubbing Blower Discharge pressure	U	U	U	U		U	U		U	U			
- Head, ft water													
Submergence (min water level)	7.7	7.7	9.3	7.7		7.7	7.7		7.7	7.7			
Freeboard above min. op. level	5.0	5.0	5.0	5.0		5.0	5.0		5.0	5.0			
Diffuser head loss	* 0.5	0.5	0.5	0.5		0.5	0.5		0.5	0.5			
Pipe & Valve friction	* 1.0	1.0	1.0	1.0		1.0	1.0		1.0	1.0			
Total Head, ft	14.2	14.2	15.8	14.2		14.2	14.2		14.2	14.2			
Discharge pressure @ min. op. level, psig	4.0	4.0	4.7	4.0		4.0	4.0		4.0	4.0			
- Discharge pressure @ pk freeboard, psig	6.2	6.2	6.8	6.2		6.2	6.2		6.2	6.2			
o Delivered Horsepower		2.4		2.4		2:			2.	•			
- Max Operating Air Temp, C	* 34	34	34	34		34	34		34	34			
Barometric Pressure, psia Blower Suction Pressure, psia	14.3 14.0	14.3 14.0	14.3 14.0	14.3 14.0		14.3 14.0	14.3 14.0		14.3 14.0	14.3 14.0			
Blower Suction Pressure, psia Daily Average Total Air, scfm	125,986	80,688	9,373	73,610		126,458	80,688		83,519	123,155			
- Daily Average Total All, Scitti	120,986	00,000	9,373	13,010		120,438	00,000		03,519	123,133			1

7472A.00 / CITY OF RIVERSIDE
REGIONAL WATER QUALITY CONTROL PLANTPROCESS ANALYSIS AND MASS BALANCE
e Time Chk by/Date FileName: PROJECT: SUBJECT: Calc by

Calc by Date Time Chk by/Dat CFP,NV 02/27/2008 1:50 PM	ate FileName: Ch07-AppA.xls													
Biotran05 v.1106														
	Design Capacity				Capacity (MBF			Capacity (EP		Design Capacity			Setup	Basis
	Plant 1	Plant 2	Combined	Plant 1	Plant 2 (Combined	Plant 1	Plant 2	Combined	Plant 1	Plant 2	Combined	info	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3			
- Avg Delivered Horsepower, hp	2,351	1.506		200	1,374		2,360	1,506		1.558	2.298			
- Peak Freeboard Delivered hp	3,387	2,169		275	1,979		3,400	2,169		2,245	3,311			
o Wire power required														
- Energy Efficiency, %	* 61.0	61.0		61.0	61.0		61.0	61.0		61.0	61.0			Default
- Wire power required, hp	20	0.170		20-	0050		2075	0.170		0==-	^==-			
Daily Average	3850	2470		330	2250		3870	2470		2550	3770			
Firm Installed Daily Average, kW	5550 2870	3560 1840		450 240	3240 1680		5570 2880	3560 1840		3680 1900	5430 2810			
Dally Average, kW Firm Installed, kW	4140	2650		340	2420		4150	2650		2740	4040			
o Scrubbing Air Blowers Required	7140	2000		340	2720		4130	2000		2140	7040			
- Number of Blowers (1 standby)	* 3	3		9	3		3	3		3	3			
- Capacity, each, scfm	63,000	40,400		1,200	36,900		63,300	40,400		41,800	61,600			
- Firm Capacity (duty blowers), scfm	126,000	80,800		9,600	73,800		126,600	80,800		83,600	123,200			
- Blower Motor Size, each, hp	2780	1780		60	1630		2790	1780		1850	2720			
SLUDGE RETURN AND WASTAGE														
o Wasting Method (see Process Layout)														
- Waste Flow from RAS, Qw	0.350	0.369		0.000	0.322		0.222	0.213		0.210	0.459			
 Waste Flow from MLSS, Zone 7, Qmw 	0.00	0.00		0.50	0.00		0.00	0.00		0.00	0.00			
o Return Sludge														
- Qr/Q, fraction	* 0.33	0.32		4.00	0.32		0.33	0.32		0.60	0.44			
- RAS flow to Aer Basin, Qr, mgd Average	13.01	7.99		151.33	7.27		13.01	7.91		15.66	16.87			
- RAS concentration, mg/L	13,648	9,936		10,000	9,954		13,781	10,122		14,411	14,342			
o Sludge Wastage	44 500	24 202		44 775	27 495		27.000	10 000		26 277	EC 105			
Total Solids Wasted, lb/dAdjustment for ESS:	41,506	31,392		41,775	27,485		27,098	18,820		26,277	56,195			
- Solids in Effluent, lb/d	1,618	830		0	756		1,623	828		1,073	1,265			
Solids in WAS, Ib/d	39,888	30,562	70,449	41,775	26,728	68,503	25,476	17,992	43,467	25,204	54,929			
- Concentration, mg/L	13,648	9,936	. 0,440	10,000	9,954	33,000	13,781	10,122	.5,407	14,411	14,342			
- Organic N, lb/d	2,648	2,102		2,755	1,837		1,703	1,199		1,623	3,621			
- Flow Rate, mgd Average	0.350	0.369	0.719	0.501	0.322	0.823	0.222	0.213	0.435	0.210	0.459	0.669		
o WAS Characteristics, mg/L														
- Wasting from -	RAS	RAS		Zone 7	RAS		RAS	RAS		RAS	RAS			
- BOD	3,781	3,059		2,758	2,964		3,863	2,677		3,462	4,137			
- TSS	13,648	9,936		10,000	9,954		13,781	10,122		14,411	14,342			
- VSS	11,508	8,432		8,415	8,454		11,590	8,484		12,066	12,031			
- NH3-N	0.3 906.1	0.4 683.5		0.2 659.5	0.3 684.0		0.5 921.4	0.9 674.6		0.2 927.9	0.4 945.4			
- Organic-N - NO3-N	906.1	683.5 7.4		659.5 7.4	6.6		921.4 7.5	7.7		927.9 5.4	945.4 7.2			
- NO3-N - Alkalinity	141	139		139	142		7.5 139	140		5.4 146	140			
- Filterable ("soluble") BOD	1.0	1.2		1.1	1.1		1.1	1.1		1.0	1.3			
- Total soluble Organic N	2.3	2.4		2.3	2.3		2.3	2.4		2.3	2.4			
o Recommended Installed Capacity	2.3	∠. -T		2.5	2.0		2.0			2.5	2.7			
- Return Sludge Pumps, gpm	27,170	17,530		69,190	15,960		27,160	17,370		18,010	26,650			
- WAS Pumps		•		•										
Wasting operation, hr/day	* 24	24	24	24	24	24	24	24	24	24	24			
Pump Capacity (2 x Qwas), gpm	490	520	1,000	700	450	1,150	310	300	610	300	640			
WAS Solids Peak Handling Capacity, lb/hr	3,330	2,550	5,880	3,490	2,230	5,710	2,130	1,500	3,630	2,110	4,580	6,680		
SECONDARY EFFLUENT														
o Flow Rate														
 Net Secondary Effluent, mgd 	38.80	24.89	63.69	37.33	22.67	60.00	38.92	24.82	63.74	25.74	37.93	63.68		
o Secondary Effluent Quality														L .
- BOD, mg/L	2	2	2.0	1	2	1.6	2	2	2.0	2	2	2.0		Estimate

7472A.00 / CITY OF RIVERSIDE
REGIONAL WATER QUALITY CONTROL PLANT-PROCESS ANALYSIS AND MASS BALANCE
e Time Chk by/Date FileName: PROJECT: SUBJECT: Calc by

Calc by Date Time Chk by/Da CFP,NV 02/27/2008 1:50 PM	te FileName: Ch07-AppA.xls													
Biotran05 v.1106	., .													
		ity (Conv. ASP)-			Capacity (MBR			Capacity (EPT		Design Capacity			Setup	Basis
	Plant 1	Plant 2 C	combined	Plant 1	Plant 2 C	ombined	Plant 1	Plant 2 (Combined	Plant 1	Plant 2	Combined	info	
			50.0						50.0	20.0		50.0		
Annual Average Plant Flow, mgd Design (Max-Month) Flow, mgd	* 32.0 35.5		52.0 57.7	32.0 35.5	20.0 22.2	52.0 57.7	32.0 35.5	20.0 22.2	52.0 57.7	22.0 24.4	30.0 33.3	52.0 57.7		
- TSS (nominal), mg/L	* 5	5 4	4.4	0	4	2.4	5	4	4.4	5	4	4.4		Default
- VSS, mg/L	4.2		3.7	0.0	3.4	2.1	4.2	3.4	3.7	4.2	3.4	3.7		
- NH3-N, mg/L	0.3	0.4	0.3	0.2	0.3	0.3	0.5	0.9	0.7	0.2	0.4	0.3		
- Total Organic N, mg/L	2.7	2.7	2.7	2.3	2.6	2.5	2.7	2.6	2.6	2.6	2.7	2.7		
 NO3/NO2-N, mg/L 	6.7	7.4	7.1	7.4	6.6	6.9	7.5	7.7	7.6	5.4	7.2	6.5		
 Alkalinity, mg/L 	141		140	139	142	141	139	140	139	146	140	142		
 Soluble Organic N, mg/L 	2.3	3 2.4	2.4	2.3	2.3	2.3	2.3	2.4	2.4	2.3	2.4	2.4		
- T.I.N., mg/L	7.0		7.5	7.6	6.9	7.2	8.0	8.6	8.3	5.6	7.7	6.8		
- Total N, mg/L	9.7	7 10.5	10.2	9.9	9.4	9.6	10.6	11.2	11.0	8.2	10.4	9.5		
TERTIARY FILTRATION			In Service		In Service PI	ant 2 (conv)	only		In Service			In Service		
 Tertiary Filtration in Service? (Y=1, N=0) 	*		1		1				1			1		
o Influent														
- Flow, mgd														
Total			63.7		22.7				63.7			63.7		
 BOD, total, mg/L 			2.0		2.0				2.0			2.0		
- SS, total, mg/L			4.4		4.0				4.4			4.4		
o Filter Area														
 Surface Area per Filter, sf 	*		200		200				200			200		
 Backwash - Continuous (0) or Intermittent (1)? 	*		0		0				0			0		
- Standby Units Provided	*		2		2				2			2		
- Number of Filters														
Existing	*		16		16				16			16		
New	*		0		0				0			0		
Total			16		16				16			16		
- Number of Units in Service			14		14				14			14		
o Filter Loading														
 Equalization provided? (Y=1, N=0) 	*		1		1				1			1		
- Peaking factor	*		1.10		1.10				1.10			1.10		Default
- Surface Area in Service, sf			2,800		2,800				2,800			2,800		
 Loading rate, gpm/sf 			17.4		6.2				17.4			17.4		
o Removal														
- SS Removal, %	*		70		70				70			70		Default
- SS removed, lb/d			1,634		529				1,635			1,634		
- BOD removed, lb/d			328		119				334			317		
o Backwash Flow														
- Percent of Flow, %	*		9		9				9			9		Cont BW
- Backwash Flow, mgd			5.73		2.04				5.74			5.73		
o Backwash Characteristics, mg/L														
- BOD			8		8				8			8		
- TSS			34		31				34			34		
- VSS			29		26				29			29		
- NH3-N			0.3		0.3				0.7			0.3		
- Organic-N			5		4				5			5		
- NO3-N			7.1		6.6				7.6			6.5		
- Alkalinity			140		142				139			142		
o Net Flow to Disinfection, mgd														
- Undisinfected Plant Water Used	*		0.00		0.00				0.00			0.00		
- To Disinfection			57.96		20.63				58.00			57.95		
Tertiary Effluent Quality, mg/L														
- BOD			1.4		1.4				1.4			1.4		
- SS			1.3		1.2				1.3			1.3		1
	1													
 VSS, mg/L 			1.1		1.0				1.1			1.1		

W.O./CLIENT: 472A.00 / CITY OF RIVERSIDE EGIONAL WATER QUALITY CONTROL PLANT PROJECT: PROCESS ANALYSIS AND MASS BALANCE SUBJECT: Calc by 02/27/2008 1:50 PM Biotran05 v.1106 Design Capacity (Conv. ASP)-high SRT Design Capacity (MBR) Design Capacity (EPT) Design Capacity (Conv. IFAS)-high SRT Setup Basis Plant 1 Plant 2 Combined info Annual Average Plant Flow, mgd 32.0 20.0 52.0 32.0 20.0 52.0 32.0 20.0 52.0 22.0 30.0 52.0 Design (Max-Month) Flow, mgd 35.5 35.5 33.3 57.7 35.5 222 57.7 222 57.7 222 57.7 24 4 - Total Organic N, mg/L 2.5 2.4 2.4 2.5 NO3/NO2-N, mg/L 7.1 6.6 7.6 6.5 - Alkalinity, mg/L 140 142 139 142 - Filterable ("soluble") BOD 1 1 1 1 1 1 1 1 - Soluble Organic N, mg/L 2.4 2.3 2.4 2.4 T.I.N., mg/L 7.5 6.9 8.3 6.8 - Total N, mg/L 10.0 9.2 10.8 9.3 CHLORINE CONTACT TANKS In Service In Service In Service In Service o Flow Rate, mgd 57.96 57.96 58.00 57.95 - Peaking factor 1.1 1.1 1.1 1.1 o Number of Tanks 4 4 4 o Volume per Tank, mil gal 1.327 1.327 1.328 1.327 o Detention Time @ peak, min. 120 120 120 120 FINAL EFFLUENT o Flow Rate, mgd - Plant Water used 0.12 0.12 0.16 0.11 - Final Effluent Flow 57.84 57.84 57.84 57.84 ESIDUALS MANAGEMENT SOLIDS GENERATED Total Primary Sludge - Flow, mgd 0.954 2.468 1.586 0.908 2.494 0.980 2.200 1.515 1.986 1.252 3.237 1.220 66,122 37,882 40,860 - Solids, lb/d 63,163 39,762 102,925 104,003 82,809 52,188 134,997 50,873 91,734 - Concentration, % 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 - VSS. % 81 81 81 81 81 81 78 78 78 81 81 81 - Organic N, Ib/d 2.654 1,670 4.323 2.757 1,592 4.349 3.263 2.054 5.317 1.723 2.150 3.874 o Total Waste Activated Sludge 0.350 0.369 0.719 0.501 0.322 0.823 0.222 0.213 0.435 0.210 0.459 0.669 - Flow, mad -- Recomm Installed Capacity, gpm 490 520 1,000 700 450 1,150 310 300 610 300 640 930 39,888 30,562 70,449 41,775 26,728 68,503 25,476 17,992 43,467 25,204 54,929 80,133 - Solids, lb/d -- Recomm Installed Capacity, lb/hr 3,330 2,550 5,880 3,490 2,130 1,500 2,110 2,230 5,710 3,630 4,580 6,680 - Concentration, mg/L 13,648 9,936 11,745 10,000 9,954 9,982 13,781 10,122 11,988 14,411 14,342 14,364 84 85 85 84 84 84 84 VSS, % 85 84 84 84 84 - Organic N, lb/d 2,648 2,102 2,755 4,592 1,703 1,199 5,244 4,750 1,837 2,902 1,623 3,621 - BOD/TSS ratio 0.28 0.31 0.28 0.30 0.28 0.28 0.26 0.24 0.29 0.27 0.29 0.27 WAS THICKENING In Service In Service In Service In Service o Sludge Feed 0.823 - Flow, mgd 0.719 0.435 0.669 - Solids, lb/d 70,449 68,503 43,467 80,133 11,988 - Concentration, mg/L 11,745 9,982 14,364 - VSS, % 85 84 84 84 - Organic N, lb/d 4,750 4,592 2,902 5,244 - Solids BOD, lb/d 20,452 19,470 11,895 21,894 - NH3-N, mg/L 0.3 0.3 0.7 0.3 NO3-N, mg/L 7.1 6.9 7.6 6.5 140 Alkalinity 141 139 142 - Filterable ("soluble") BOD, mg/L 1.1 1.1 1.1 1.1 - Soluble OrgN, mg/L 2.4 23 24 24

0.079

0.080

0.080

4

Number of Units

-- N/VSS ratio for solids

- Number of Units in Service

0.078

W.O./CLIENT: 472A.00 / CITY OF RIVERSIDE REGIONAL WATER QUALITY CONTROL PLANT PROJECT: PROCESS ANALYSIS AND MASS BALANCE SUBJECT: Calc by 02/27/2008 1:50 PM Biotran05 v.1106 Design Capacity (Conv. ASP)-high SRT Design Capacity (MBR) Design Capacity (EPT) Design Capacity (Conv. IFAS)-high SRT Setup Basis Plant 1 Plant 2 Combined info Annual Average Plant Flow, mgd 32.0 20.0 52.0 32.0 20.0 52.0 32.0 20.0 52.0 22.0 30.0 52.0 Design (Max-Month) Flow, mgd 35.5 57.7 35.5 22.2 57.7 35.5 22.2 57.7 33.3 57.7 222 24 4 - Diameter, ft 37 37 37 37 - Effective Area in Service, sf 3,959 3,959 3,959 3,959 Default - Operating cycle, hr/week 168 168 168 168 o Hydraulic loading, gpm/sf 0.29 0.30 0.18 0.30 Solids Loading, lb/d-sf 17.8 17.3 11.0 20.2 o Thickened Sludge - Solids Capture, % 95 95 95 95 - Solids, lb/d 66,927 65,078 41,294 76,126 - Percent Solids, % 6.0 GBT 6.0 GBT 6.0 GBT 6.0 GBT Volume, mgd 0.134 0.130 0.083 0.152 - Volatile Solids, lb/d 56,588 54,960 34,681 63,820 - Organic N, lb/d 2.759 4.985 4.516 4.365 o Underflow 3,522 - Underflow solids, lb/d 3,425 2,173 4,007 - Flow, mad 0.585 0.693 0.352 0.517 - Characteristics, mg/L 255 -- BOD 211 170 204 -- TSS 721 593 740 930 -- VSS 610 501 621 779 -- NH3-N 0.3 0.3 0.7 0.3 -- Organic-N 48 39 49 60 -- NO3-N 7.1 6.9 7.6 6.5 -- Alkalinity 140 141 139 142 ANAEROBIC DIGESTION In Service In Service In Service In Service Digester Feed - Flow, total, mad 0.309 0.307 0.312 0.308 - Solids, total, lb/d 154.413 153,481 156.042 154.100 - Volatile Solids, total, lb/d 124.238 127,422 126,530 126,950 - Organic N. total, lb/d 8.190 7.278 8.277 8.061 o - Anaerobic Digestion Type Acid Phased Anaerobic Digestion In-Service In-Service In-Service In-Service FIRST SET OF DIGESTERS IN SERIES Digester Size - Smaller Size Units -- Number -- Diameter, ft 60 60 60 60 -- SWD. ft 28.5 28.5 28.5 28.5 -- Volume per Digester, kcf 80.6 80.6 80.6 80.6 -- Volume per Digester, mg 0.60 0.60 0.60 0.60 - Larger Size Units -- Number 0 0 0 0 -- Diameter, ft 70 70 70 70 -- SWD, ft 29 29 29 29 -- Volume per Digester, kcf 111.6 111.6 111.6 111.6 -- Volume per Digester, mg 0.83 0.83 0.83 0.83 - Gross Volume, kcf -- All Units in Service 80.6 80.6 80.6 80.6 ...Largest digester 80.6 80.6 80.6 80.6

0.0

0.0

0.0

5

-- One Unit OOS

- Effective Volume, kcf

Allowance for grit, percent

0.0

CAROLLO ENGINEERS, PC						
W.O./CLIENT: 7472A.00 / CITY OF RIVE	RSIDE					
	LITY CONTROL PLANT -					
SUBJECT: PROCESS ANALYSIS AN	ID MASS BALANCE					
Calc by Date Time C CFP,NV 02/27/2008 1:50 PM	Chk by/Date FileName: Ch07-AppA.xls					
CFP,NV 02/27/2008 1:50 PM Biotran05 v.1106	Ch07-AppA.xis					
Biotranus V.1106	Design Canaci	ity (Conv. ASP)-high SRT	Design Capacity (MBR)	Design Capacity (EPT)	Design Capacity (Conv. IFAS)-high SRT	Setup Basi
	Plant 1	Plant 2 Combined	Plant 1 Plant 2 Combined	Plant 1 Plant 2 Combined	Plant 1 Plant 2 Combined	info
	r iait i	Tidik 2 Combined	Tidit 2 Combined	Tant 1 Tant 2 Combined	Tidit 1 Tidit 2 Combined	
Annual Average Plant Flow, mgd	* 32.0		32.0 20.0 52.0	32.0 20.0 52.0	22.0 30.0 52.0	
Design (Max-Month) Flow, mgd	35.5	22.2 57.7	35.5 22.2 57.7	35.5 22.2 57.7	24.4 33.3 57.7	
All Units in Service		77	77	77	77	
One Unit OOS		0	0	0		
o Loading						
 VSS Loading, lb VSS/cf-d 						
All Units in Service		1.7	1.7	1.6	1.7	
One Unit OOS		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
 Detention Time, days All Units in Service 		4.00	4.07	4.04	4.00	
		1.86	1.87 0.0	1.84 0.0	1.86	
One Unit OOS o SECOND SET OF DIGESTERS IN SERIES		0.0	0.0	0.0	0.0	
o Digester Size						
- Smaller Size Units						
Number	*	2	2	2	2	
Diameter, ft	*	90	90	90	90	
SWD, ft	*	32	32	32	32	
Volume per Digester, kcf		203.6	203.6	203.6	203.6	
Volume per Digester, mg		1.52	1.52	1.52	1.52	
 Larger Size Units Number 	*	4	4	4	1	
Number Diameter, ft	*	1 88	1 88	1 88	1 88	
SWD, ft	*	38	38	38	38	
Volume per Digester, kcf		231.1	231.1	231.1	231.1	
Volume per Digester, mg		1.73	1.73	1.73	1.73	
- Gross Volume, kcf						
All Units in Service		638.3	638.3	638.3	638.3	
Largest digester		231.1	231.1	231.1	231.1	
One Unit OOS		407.2	407.2	407.2		
- Allowance for grit, percent	*	5	5	5	5	
- Effective Volume, kcf All Units in Service		606	606	606	606	
One Unit OOS		387	387	387	387	
o Loading		301	307	307	307	
- VSS Loading, lb VSS/cf-d						
All Units in Service		0.21	0.2	0.2	0.2	
One Unit OOS		0.33	0.3	0.3	0.3	
- Detention Time, days						
All Units in Service		14.70	14.79	14.54	14.73	
One Unit OOS	*	9.4	9.4	9.3	9.4	
o Temperature, deg C o THIRD SET OF DIGESTERS IN SERIES		35	35	35	35	
o Digester Size						
- Smaller Size Units						
Number	*	1	1	1	1	
Diameter, ft	*	75	75	75		
SWD, ft	*	32	32	32	32	
Volume per Digester, kcf		141.4	141.4	141.4	141.4	
Volume per Digester, mg		1.06	1.06	1.06	1.06	
- Larger Size Units		_	_	_	_	
Number Diameter, ft	*	0 90	0 70	0 70	0 70	
Diameter, π SWD, ft	*	90 29	29	29	70 29	
SvvD, it Volume per Digester, kcf		184.5	111.6	111.6	111.6	
Volume per Digester, kor Volume per Digester, mg		1.38	0.83	0.83	0.83	

7472A.00 / CITY OF RIVERSIDE
REGIONAL WATER QUALITY CONTROL PLANT PROCESS ANALYSIS AND MASS BALDE
PROCESS ANALYSIS AND PROCE PROJECT: SUBJECT:

Calc by Date Time Chk by/Date CFP.NV 02/27/2008 1:50 PM	FileName:													
Biotran05 v.1106	Опот-пррп.хіз													I
Biotrarios V. 1100	Design Canacit	y (Conv. ASP)-hig	nh SRT	Design (Capacity (MBR	4	Design (Capacity (EPT)		Design Capacity	(Conv. IFA	S)-high SRT	Setup	Basis
	Plant 1		mbined	Plant 1		combined	Plant 1		mbined	Plant 1		Combined	info	Dasis
	i idili i	riant 2 Oo	IIIDIIICU	i idiit i	riant 2	ombined	i idiit i	riant 2 Oc	ilibilied	i idiit i	i lant 2	Combined	11110	
Annual Average Plant Flow, mgd	* 32.0	20.0	52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2	57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3			
	00.0	22,2		00.0	22.2		00.0	22.2		27.7	00.0			
All Units in Service			141.4			141.4			141.4			141.4		
Largest digester			141.4			141.4			141.4			141.4		
One Unit OOS			0.0			0.0			0.0			0.0		
 Allowance for grit, percent 	*		5			5			5			5		
 Effective Volume, kcf 														
All Units in Service			134			134			134			134		
One Unit OOS			134			134			134			134		
o Loading														
 VSS Loading, lb VSS/cf-d 														
All Units in Service			0.949			0.942			0.925			0.945		
One Unit OOS			0.949			0.942			0.925			0.945		
 Detention Time, days 														
All Units in Service			3.26			3.28			3.22			3.26		
One Unit OOS			3.3			3.3			3.2			3.3		
o Digestion Summary														
- Temperature, deg C	*		35			35			35			35		
- All units in service														
Total Volume, mg			6.1			6.1			6.1			6.1		
Combined SRT, days			19.8			19.9			19.6			19.8		
- Largest Unit out of service														
Largest Digester, mg			1.64			1.64			1.64			1.64		
Combined SRT, days			14.5			14.6			14.3			14.5		
o Acid Phase Assumptions														
- Acid Phase Cut Off, days	*		5			5			5			5		
- Additoinal biodegradability of WAS, %	*		Ō			Ō			0			Ō		
o VS Reduction for the First Set of Digests In Series														
- Acid Phase or Methane Phase?			acid			acid			acid			acid		
- Primary Sludge VSS, ppd			70,834			71,570			89,557			63,130		
% Degradable	*		71			71			67			71		
Inerts, ppd			20,224			20,441			29,491			18,027		
Degradable Solids, ppd			50,610			51,129			60,066			45,103		
VSS destruction %			27			27			25			27		
VS Destroyed, ppd			19,076			19,344			22,493			17,022		
- WAS VSS, ppd			56,588			54,960			34,681			63,820		
Aeration Basin Aerobic SRT, days			7.2			7.9			9.2			8.2		
% Degradable			56			55			54			55		
Inerts, ppd			24,789			24,486			16,007			28,660		
Degradable Solids, ppd	1		31,799			30,474			18,674			35,160		
VSS destruction %	1		21			21			20			21		
VS Destroyed	1		11,986			11,530			6,993			13,269		
- Total VSS destruction, %	1		24			24			24			24		
T * SRT (deg C*days)			65			65			64			65		
VSR check, %			NA			NA			NA			NA NA		
- VSS destroyed, lb/d	1		26,989			26,544			25,050			26,395		
- Discharge Total Solids, lb/d	1		127,424			126,936			130,992			127,705		
- Discharge Volatile Solids, lb/d	1		100,433			99,986			99,188			100,555		
TSS, %	1		5.0			5.0			5.0			5.0		
VSS, %	1		78.8			78.8			75.7			78.7		
o Gas Production	1		, 0.0			, 0.0			, 5.7			70.7		
- cf/lb VSS destroyed	*		4			4			4			4		
- Gas Production, kcf/d	1		108			106			100			106		
- BTU/cf	*		130			130			130			130		
- MMBTU/hr	1		0.6			0.6			0.5			0.6		
o VS Reduction for the Second Set of Digests In Series	1		0.0			0.0			0.0			5.0		
VO TROUBLINITION THE OCCORD OF DIGESTS III SELIES	1													l

CAROLLO ENGINEERS, PC													
W.O./CLIENT: 7472A.00 / CITY OF RIVERSIDE													
PROJECT: REGIONAL WATER QUALITY CON	NTROL PLANT -												
SUBJECT: PROCESS ANALYSIS AND MASS													
Calc by Date Time Chk by/Date	FileName:												
CFP,NV 02/27/2008 1:50 PM Biotran05 v.1106	Ch07-AppA.xls												_
Biotranus v.1106	Design Capacity (Co	nny ASP)-high SRT	Design Ca	apacity (MBR)		Design C	apacity (EPT)		Design Capacity ((Conv. IFAS)	-high SRT	Setup	Basis
		ant 2 Combined		Plant 2 Comb	bined			bined	Plant 1		Combined	info	Dasis
Annual Average Plant Flow, mgd	* 32.0	20.0 52.0	32.0	20.0	52.0	32.0	20.0	52.0	22.0	30.0	52.0		
Design (Max-Month) Flow, mgd	35.5	22.2 57.7	35.5	22.2	57.7	35.5	22.2	57.7	24.4	33.3	57.7		
- Acid Phase or Methane Phase?		methane			thane			thane			methane		
- Remaining Primary Sludge VSS, ppd		51,758		5	2,226		6	7,064			46,108		
% Degradable		61			61			56			61		
VSS destruction % VS Destroyed		50		21	50		9	46 1,030			50		
- Remaining WAS VSS, ppd		26,089 44,602			6,324 3,430			7,688			23,241 50,551		
% Degradable		44		7	44		2	42			43		
VSS destruction %		37			36			35			36		
VS Destroyed		16,392		1	5,690			9,647			18,117		
- Total VSS destruction, %		42			42			41			41		
- VSS destroyed, lb/d		42,482			2,014			0,676			41,358		
- Discharge Total Solids, lb/d		84,942			4,923			0,316			86,347		
- Discharge Volatile Solids, lb/d TSS, %		57,951 3.3		5	7,973 3.3		5	8,512 3.5			59,197 3.4		
VSS, %		68.2			68.3			64.8			68.6		
o Gas Production		00.2			00.0			04.0			00.0		
- cf/lb VSS destroyed	*	22			22			22			22		
- Gas Production, kcf/d		935			924			895			910		
- BTU/cf	*	670			670			670			670		
- MMBTU/hr		26.1			25.8			25.0			25.4		
VS Reduction for the Third Set of Digests In Series Acid Phase or Methane Phase?		methane			thane			thane			methane		
Remaining Primary Sludge VSS, ppd		25,669			5,902			6,035			22,867		
% Degradable		25,009		2.	21			18			21		
VSS destruction %		11			11			9			11		
VS Destroyed		2,803			2,820			3,352			2,495		
- Remaining WAS VSS, ppd		28210		2	27741			18042			32434		
% Degradable		12			12			11			12		
VSS destruction % VS Destroyed		6 175			6 171			6 194			6 150		
- Total VSS destruction, %		175 5			5			194			4		
- VSS destroyed, lb/d		2,978		:	2,991			3,546			2,644		
- Discharge Total Solids, lb/d		81,964			1,932			6,770			83,703		
- Discharge Volatile Solids, lb/d		54,973		5-	4,982		5	4,966			56,553		
TSS, %		3.2			3.2			3.3			3.3		
VSS, %		67.1			67.1			63.3			67.6		
o Gas Production - cf/lb VSS destroyed	*	15			15			15			15		
- Gas Production, kcf/d		45			45			53			40		
- BTU/cf	*	615			615			615			615		
- MMBTU/hr		1.1			1.1			1.4			1.0		
o Digestion Summary													
- Total VSS destroyed, lb/day		72,449		7	1,548		6	9,272			70,397		
- Total VSS destruction, %	37	57	37		57	37		56	37		55		
Temp * SRTTotal Gas Production, kcf/d		693 1087			698 1075			686 1048			695 1055		
- Overall rate, cf/lb VSS destroyed		15.0			15.0			15.1			15.0		
- Total Energy Production, mmBTU/hr		28			28			27			27		
Overall rate, BTU/cf		614			614			616			614		
o Nitrogen in Dig Sludge Filtrate													
 Assumed Sol OrgN in Digester effl, mg/L 		5			5			5			5		
lb/d		12.9			12.79			13.00			12.84		
- Org N/VSS (VSS of digester feed) in Digester Solids	3	0.064			0.064			0.058			0.065		
 VSS destroyed, lb/d 	I	72,449		7	1,548		6	9,272			70,397		I

7472A.00 / CITY OF RIVERSIDE REGIONAL WATER QUALITY CONTROL PLANT -PROCESS ANALYSIS AND MASS BALANCE PROJECT: SUBJECT:

Calc by Date Time Chk by/Da CFP,NV 02/27/2008 1:50 PM	te FileName: Ch07-AppA.xls												
Biotran05 v.1106	Dosign Canasity	(Conv. ASP)-high SRT	Docian C	Capacity (MBR)		Dosian C	apacity (EPT)	_	Design Capacity	(Conv. IEAS	S) bigh SPT	Setup	Basis
	Plant 1	Plant 2 Combined	Plant 1		ombined	Plant 1	Plant 2 Co		Plant 1		Combined	info	Dasis
Annual Average Plant Flow, mgd Design (Max-Month) Flow, mgd	* 32.0 35.5	20.0 52.0 22.2 57.7	32.0 35.5	20.0 22.2	52.0 57.7	32.0 35.5	20.0 22.2	52.0 57.7	22.0 24.4	30.0 33.3			
- Ammonia generated (organic N released), lb/d		4,650			4,551			4,051			4,583		
- Organic N taken up by struvite, lb/d		0			0			0			0		
- NH3 Concentration, mg/L		1,807			1,779			1,558			1,784		
- Alkalinity, mg/L		6,452			6,354			5,563			6,373		
DEWATERING (Belt Presses)		N.I.S.			N.I.S.			N.I.S.			N.I.S.		
Sludge Feed													
- Flow rate, mgd	*	0.309			0.307			0.312			0.308		
- Total Solids, lb/d	*	81,964			81,932			86,770			83,703		
- Total VSS, lb/d	*	54,973			54,982			54,966			56,553		
Number of Belt Presses (2m)	*	0			0			0			0		
- Number of Units in Service	*	0			0			Ö			Ö		
- Feed Rate, gpm per unit	*	110			110			110			110		Default
- Operating cycle								_			•		
days/week	*	6			6			6			6		
hours/day (calc)		0.0			0.0			0.0			0.0		
o Sludge Cake		0.0			0.0			0.0			3.0		
- Capture, %	*	90			90			90			90		Default
- Concentration, %	*	16.23			16.38			19.24			15.25		Default
- Cake Solids, lb/d		10.20			10.00						10.20		Doiaun
Dry Solids, lb/d		81,964			81,932			86,770			83,703		
Wet Cake, tons/d		N.I.S.			N.I.S.			N.I.S.			N.I.S.		
- Flow, mgd		0.309			0.307			0.312			0.308		
o Filtrate		0.303			0.507			0.512			0.300		
- Filtrate Flow, mgd		0.000			0.000			0.000			0.000		
- Characteristics, mg/L		0.000			0.000			0.000			0.000		
BOD	*	700			700			700			700		Default
TSS	*	250			250			250			250		Default
VSS		168			168			158			169		Delault
NH3-N		1,807			1,779			1,558			1,784		
Organic-N		16			1,779			1,556			1,704		
NO3-N		0			0			0			0		
Alkalinity		5,414			5,394			5,196			5,303		
Alkalinity D. Wash Water		0,414			5,594			5,190			5,503		
	*	1.00			1.00			1.00			1.00		Default
 Wash water, mgd/mgd feed Wash Water flow, mgd 		0.000			0.000			0.000			0.000		Delault
- Solids in Wash Water		0.000			0.000			0.000			0.000		
Unrecovered Solids, lb/d		0			0			0			0		
Solids in Filtrate		0			0			0			0		
Solids in Filtrate Solids in Wash Water, lb/d		0			0			0			0		
TSS in Wash Water, mg/L		0			0			0			0		
- Characteristics, mg/L		U			U			U			U		
- Characteristics, riig/L BOD		2			2			2			2		
TSS		0			0			0			0		
VSS		0			0			0			0		
V33 NH3-N		0.0			0.0			0.2			0.0		
Organic-N		0.0			2			2			2		
NO3-N		7.1			6.9			7.6			6.5		
	1	140						139			6.5 142		
Alkalinity					141						142		
Filterable ("soluble") BOD		1.1			1.1			1.1 2.4					
Total soluble Organic N		2.4			2.3			2.4			2.4		
o Combined Filtrate & Wash Water													
- Flow, mgd		0.000			0.000			0.000			0.000		
Filtrate	1	0.000			0.000			0.000			0.000		I

W.O./CLIENT: 472A.00 / CITY OF RIVERSIDE EGIONAL WATER QUALITY CONTROL PLANT PROJECT: PROCESS ANALYSIS AND MASS BALANCE SUBJECT: Calc by 02/27/2008 1:50 PM Biotran05 v.1106 Design Capacity (Conv. ASP)-high SRT Design Capacity (MBR) Design Capacity (EPT) Design Capacity (Conv. IFAS)-high SRT Setup Basis Plant 1 Plant 2 Combined info Annual Average Plant Flow, mgd 32.0 20.0 52.0 32.0 20.0 52.0 32.0 20.0 52.0 22.0 30.0 52.0 Design (Max-Month) Flow, mgd 22.2 57.7 35.5 57.7 35.5 22.2 57.7 33.3 57.7 35.5 22.2 24 4 -- Wash Water 0.000 0.000 0.000 0.000 -- Total 0.000 0.000 0.000 0.000 - Characteristics, mg/L -- BOD 0 0 0 0 -- TSS 0 0 0 -- VSS 0 0 0 0 -- NH3-N 0 0 0 0 -- Organic-N 0 0 0 -- NO3-N 0 0 0 0 -- Alkalinity 0 0 0 0 -- Filterable ("soluble") BOD 0 0 -- Total soluble Organic N 0.0 0.0 0.0 0.0 CENTRIFUGE DEWATERING/THICKENING In Service In Service In Service In Service Anaerobic Anaerobic Anaerobic Anaerobic o Application Dig Dewat Dig Dewat Dig Dewat Dig Dewat o Sludge Feed - Flow Rate, mgd 0.309 0.307 0.312 0.308 - TSS. % 3.18 3.20 3.34 3.26 - Solids, lb/d 81,964 81,932 86,770 83,703 -- VSS fraction 0.67 0.67 0.63 0.68 Number of Centrifuges 3 3 3 3 - Number of Units in Service 2 2 - Feed Rate, gpm per unit 250 250 250 250 - Operating cycle -- days/week 6 6 6 -- hours/day (calc) 12.0 11.9 12.1 12.0 o Chemical Dose - Ferric chloride, lb/ton 0 0 0 0 - Ferric chloride, lb/day Ω 0 0 Ω - Polymer, lb/ton 16 16 16 16 - Polymer, lb/day 635 635 672 649 - Chemical Sludge generated, lb/d 0 0 0 0 o Sludge Cake - Capture, % 95 95 95 95 Default - Cake Solids, lb/d 77,866 77,836 82,432 79,518 - Concentration, % 24.9 25.0 27.5 23.6 Default 0.0360 - Flow, mgd 0.0374 0.0373 0.0405 o Filtrate - Filtrate Flow, mgd 0.271 0.269 0.276 0.268 - Characteristics, mg/L 500 500 230 Default -- BOD 500 500 -- TSS 1,812 1,823 1,886 1,876 250 -- VSS 1,215 1,224 208 1,195 1,267 -- NH3-N 1,807 1,779 1,558 1,784 23 -- Organic-N 83 83 75 88 14 -- NO3-N Λ 0 0 0 0 -- Alkalinity 6,452 6,354 5,563 6,373 250 -- Fpv, VSS fraction 0.67 0.67 0.63 0.68 0.83 -- Fvu, Fraction VSS that is Unbiodeg 0.70 0.70 0.70 0.350 0.70 -- D.O. Concentration, mg/L 0 0 1.0